The Order on \mathbb{N}

$m<n \Leftrightarrow m \in n$

```
m<n\Leftrightarrowm\inn
```

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}$,

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}$,

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n)$

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n$

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}$,

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}$,

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.
Lemma.
(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Lemma.

(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n. The Basis of Induction ($n=0$) holds vacuously.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Lemma.

(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n. The Basis of Induction $(n=0)$ holds vacuously. For the Inductive Step,

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Lemma.

(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n. The Basis of Induction $(n=0)$ holds vacuously. For the Inductive Step, assume that the statement holds for some $n=k$ and that $m \in S(k)=k \cup\{k\}$.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Lemma.

(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n. The Basis of Induction $(n=0)$ holds vacuously. For the Inductive Step, assume that the statement holds for some $n=k$ and that $m \in S(k)=k \cup\{k\}$. If $m \in k$,

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Lemma.

(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n. The Basis of Induction $(n=0)$ holds vacuously. For the Inductive Step, assume that the statement holds for some $n=k$ and that $m \in S(k)=k \cup\{k\}$. If $m \in k$, then $S(m) \leq k$ by induction,

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Lemma.

(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n. The Basis of Induction $(n=0)$ holds vacuously. For the Inductive Step, assume that the statement holds for some $n=k$ and that $m \in S(k)=k \cup\{k\}$. If $m \in k$, then $S(m) \leq k$ by induction, so $S(m) \in S(k)$,

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Lemma.

(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n. The Basis of Induction $(n=0)$ holds vacuously. For the Inductive Step, assume that the statement holds for some $n=k$ and that $m \in S(k)=k \cup\{k\}$. If $m \in k$, then $S(m) \leq k$ by induction, so $S(m) \in S(k)$, so $S(m) \leq S(k)$.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Lemma.

(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n. The Basis of Induction $(n=0)$ holds vacuously. For the Inductive Step, assume that the statement holds for some $n=k$ and that $m \in S(k)=k \cup\{k\}$. If $m \in k$, then $S(m) \leq k$ by induction, so $S(m) \in S(k)$, so $S(m) \leq S(k)$. If $m=k$, then $S(m) \leq S(k)$.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Lemma.

(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n. The Basis of Induction ($n=0$) holds vacuously. For the Inductive Step, assume that the statement holds for some $n=k$ and that $m \in S(k)=k \cup\{k\}$. If $m \in k$, then $S(m) \leq k$ by induction, so $S(m) \in S(k)$, so $S(m) \leq S(k)$. If $m=k$, then $S(m) \leq S(k)$. In either case, the statement holds for $n=S(k)$.

Let's write $m \leq n$ to mean $m<n$ or $m=n$.

Lemma.

(1) For all $k, n \in \mathbb{N}, k<S(n) \quad$ iff $\quad k<n$ or $k=n \quad$ iff $\quad k \leq n$.
(2) For all $n \in \mathbb{N}, \quad 0 \leq n$.
(3) If $m<n$, then $S(m) \leq n$.

Proof.
The first item can be proved without induction. (Just use $S(n)=n \cup\{n\}$.)
For the second item, prove $\varphi(n): 0 \leq n$ by induction.
The third item can be proved by induction on n. The Basis of Induction ($n=0$) holds vacuously. For the Inductive Step, assume that the statement holds for some $n=k$ and that $m \in S(k)=k \cup\{k\}$. If $m \in k$, then $S(m) \leq k$ by induction, so $S(m) \in S(k)$, so $S(m) \leq S(k)$. If $m=k$, then $S(m) \leq S(k)$. In either case, the statement holds for $n=S(k)$. \square

Transitive sets

Transitive sets

Definition.

Transitive sets

Definition. A set T is transitive if

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem.

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof.

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)

- (Basis of Induction)

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)

- (Basis of Induction)

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive.

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive.

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive.

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive. Let's check that $S(k)$ is transitive:

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive. Let's check that $S(k)$ is transitive:

$$
A \in B \in S(k)
$$

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive. Let's check that $S(k)$ is transitive:

$$
A \in B \in S(k)=k \cup\{k\}
$$

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive. Let's check that $S(k)$ is transitive:

$$
A \in B \in S(k)=k \cup\{k\}
$$

implies $A \in B \in k$

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive. Let's check that $S(k)$ is transitive:

$$
A \in B \in S(k)=k \cup\{k\}
$$

implies $A \in B \in k$ (in which case $A \in k$, by IH)

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive. Let's check that $S(k)$ is transitive:

$$
A \in B \in S(k)=k \cup\{k\}
$$

implies $A \in B \in k$ (in which case $A \in k$, by IH) or $A \in B=k$.

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive. Let's check that $S(k)$ is transitive:

$$
A \in B \in S(k)=k \cup\{k\}
$$

implies $A \in B \in k$ (in which case $A \in k$, by IH) or $A \in B=k$. In either case, $A \in k$, so $A \in k \cup\{k\}=S(k)$.

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive. Let's check that $S(k)$ is transitive:

$$
A \in B \in S(k)=k \cup\{k\}
$$

implies $A \in B \in k$ (in which case $A \in k$, by IH) or $A \in B=k$. In either case, $A \in k$, so $A \in k \cup\{k\}=S(k)$. \square

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive. Let's check that $S(k)$ is transitive:

$$
A \in B \in S(k)=k \cup\{k\}
$$

implies $A \in B \in k$ (in which case $A \in k$, by IH) or $A \in B=k$. In either case, $A \in k$, so $A \in k \cup\{k\}=S(k) . \square$
Corollary.

Transitive sets

Definition. A set T is transitive if

$$
R \in S \in T \Rightarrow R \in T
$$

Theorem. Every natural number is transitive.
Proof. (Induction.)
(1) (Basis of Induction) 0 is transitive. (Reason?)
(2) (Inductive Step) Assume that k is transitive. Let's check that $S(k)$ is transitive:

$$
A \in B \in S(k)=k \cup\{k\}
$$

implies $A \in B \in k$ (in which case $A \in k$, by IH) or $A \in B=k$. In either case, $A \in k$, so $A \in k \cup\{k\}=S(k) . \square$
Corollary. The relation $<$ is transitive on \mathbb{N}.

Irreflexivity

Irreflexivity

Theorem.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction)

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction)

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that $S(k)<S(k)$

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that $S(k)<S(k)=k \cup\{k\}$.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that $S(k)<S(k)=k \cup\{k\}$. Then $k \in S(k) \in k \cup\{k\}$,

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that $S(k)<S(k)=k \cup\{k\}$. Then $k \in S(k) \in k \cup\{k\}$, so $k \in k$,

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that $S(k)<S(k)=k \cup\{k\}$. Then $k \in S(k) \in k \cup\{k\}$, so $k \in k$, contrary to $k \nless k$.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that $S(k)<S(k)=k \cup\{k\}$. Then $k \in S(k) \in k \cup\{k\}$, so $k \in k$, contrary to $k \nless k$. \square

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that
$S(k)<S(k)=k \cup\{k\}$. Then $k \in S(k) \in k \cup\{k\}$, so $k \in k$, contrary to $k \nless k$. \square

Corollary.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that
$S(k)<S(k)=k \cup\{k\}$. Then $k \in S(k) \in k \cup\{k\}$, so $k \in k$, contrary to $k \nless k$. \square

Corollary. The relation $<$ is irreflexive and transitive on \mathbb{N}, hence is a strict order on \mathbb{N}.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that $S(k)<S(k)=k \cup\{k\}$. Then $k \in S(k) \in k \cup\{k\}$, so $k \in k$, contrary to $k \nless k$. \square

Corollary. The relation $<$ is irreflexive and transitive on \mathbb{N}, hence is a strict order on \mathbb{N}.

Comment.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that
$S(k)<S(k)=k \cup\{k\}$. Then $k \in S(k) \in k \cup\{k\}$, so $k \in k$, contrary to $k \nless k$. \square

Corollary. The relation $<$ is irreflexive and transitive on \mathbb{N}, hence is a strict order on \mathbb{N}.

Comment. The Axiom of Foundation provides a simpler proof.

Irreflexivity

Theorem. The relation $<$ is irreflexive on \mathbb{N}.
Proof. We prove that $n \nless n$ holds for all n by induction.
(1) (Basis of Induction) $0 \nless 0$. (Reason?)
(2) (Inductive Step) Assume that $k \nless k$. Assume that
$S(k)<S(k)=k \cup\{k\}$. Then $k \in S(k) \in k \cup\{k\}$, so $k \in k$, contrary to $k \nless k$. \square

Corollary. The relation $<$ is irreflexive and transitive on \mathbb{N}, hence is a strict order on \mathbb{N}.

Comment. The Axiom of Foundation provides a simpler proof. If $n<n$, then $\{n\}$ has no \in-minimal element.

Trichotomy

Trichotomy

Theorem.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}$,

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction)

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction)

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction) The statement is true for $n=0$ by the earlier lemma:

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction) The statement is true for $n=0$ by the earlier lemma: $(0 \leq n)$.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction) The statement is true for $n=0$ by the earlier lemma: $(0 \leq n)$.
(2) (Inductive Step) Assume that k is comparable with all natural numbers.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction) The statement is true for $n=0$ by the earlier lemma: $(0 \leq n)$.
(2) (Inductive Step) Assume that k is comparable with all natural numbers.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction) The statement is true for $n=0$ by the earlier lemma: $(0 \leq n)$.
(2) (Inductive Step) Assume that k is comparable with all natural numbers. We must show that $S(k)$ is comparable with any $m \in \mathbb{N}$.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction) The statement is true for $n=0$ by the earlier lemma: $(0 \leq n)$.
(2) (Inductive Step) Assume that k is comparable with all natural numbers. We must show that $S(k)$ is comparable with any $m \in \mathbb{N}$. If $m \leq k$, then $m<k \cup\{k\}=S(k)$.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction) The statement is true for $n=0$ by the earlier lemma: $(0 \leq n)$.
(2) (Inductive Step) Assume that k is comparable with all natural numbers. We must show that $S(k)$ is comparable with any $m \in \mathbb{N}$. If $m \leq k$, then $m<k \cup\{k\}=S(k)$. If $k<m$, then $S(k) \leq m$ by the earlier lemma.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction) The statement is true for $n=0$ by the earlier lemma: $(0 \leq n)$.
(2) (Inductive Step) Assume that k is comparable with all natural numbers. We must show that $S(k)$ is comparable with any $m \in \mathbb{N}$. If $m \leq k$, then $m<k \cup\{k\}=S(k)$. If $k<m$, then $S(k) \leq m$ by the earlier lemma. \square

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction) The statement is true for $n=0$ by the earlier lemma: $(0 \leq n)$.
(2) (Inductive Step) Assume that k is comparable with all natural numbers. We must show that $S(k)$ is comparable with any $m \in \mathbb{N}$. If $m \leq k$, then $m<k \cup\{k\}=S(k)$. If $k<m$, then $S(k) \leq m$ by the earlier lemma. \square

Corollary.

Trichotomy

Theorem. For any $m, n \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}, m<n$ or $m=n$ or $n<m$.
(1) (Basis of Induction) The statement is true for $n=0$ by the earlier lemma: $(0 \leq n)$.
(2) (Inductive Step) Assume that k is comparable with all natural numbers. We must show that $S(k)$ is comparable with any $m \in \mathbb{N}$. If $m \leq k$, then $m<k \cup\{k\}=S(k)$. If $k<m$, then $S(k) \leq m$ by the earlier lemma. \square

Corollary. The relation $<$ is a strict total order on \mathbb{N}.

Well-order

Well-order

Definition.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a <-least element.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. ($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. ($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.
($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Hence $B=\mathbb{N}$.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.
($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Hence $B=\mathbb{N}$. But this contradicts:

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.
($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Hence $B=\mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}$,

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.
($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Hence $B=\mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q=\emptyset$

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.
($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Hence $B=\mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q=\emptyset$ and $Q \neq \emptyset$.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.
($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Hence $B=\mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q=\emptyset$ and $Q \neq \emptyset$. \square

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a <-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.
($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Hence $B=\mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q=\emptyset$ and $Q \neq \emptyset$. \square

Comment.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;\langle \rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.
($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Hence $B=\mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q=\emptyset$ and $Q \neq \emptyset$. \square
Comment. The Axiom of Foundation provides a simpler proof.

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;<\rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.
($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Hence $B=\mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q=\emptyset$ and $Q \neq \emptyset$. \square
Comment. The Axiom of Foundation provides a simpler proof. If $\emptyset \neq Q \subseteq \mathbb{N}$,

Well-order

Definition. A partially ordered set $\langle P ;<\rangle$ is a well-order if every nonempty subset of P has a $<$-least element.

Theorem. $\langle\mathbb{N} ;<\rangle$ is a well-order.
Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no $<$-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.
($B=\{b \in \mathbb{N} \mid ;(\forall q \in Q)(b<q)\}$.)
(1) $B \subseteq \mathbb{N}$.
(2) $0 \in B$.
(3) B is closed under successor.

Hence $B=\mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q=\emptyset$ and $Q \neq \emptyset$. \square
Comment. The Axiom of Foundation provides a simpler proof. If $\emptyset \neq Q \subseteq \mathbb{N}$, then any \in-minimal element of Q is a <-least element.

