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m < n ⇔ m ∈ n

Let’s write m ≤ n to mean m < n or m = n.

Lemma.

1 For all k, n ∈ N, k < S(n) iff k < n or k = n iff k ≤ n.
2 For all n ∈ N, 0 ≤ n.
3 If m < n, then S(m) ≤ n.

Proof.
The first item can be proved without induction. (Just use S(n) = n ∪ {n}.)

For the second item, prove φ(n) : 0 ≤ n by induction.

The third item can be proved by induction on n. The Basis of Induction
(n = 0) holds vacuously. For the Inductive Step, assume that the statement
holds for some n = k and that m ∈ S(k) = k ∪ {k}. If m ∈ k, then
S(m) ≤ k by induction, so S(m) ∈ S(k), so S(m) ≤ S(k). If m = k, then
S(m) ≤ S(k). In either case, the statement holds for n = S(k). 2
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Transitive sets

Definition. A set T is transitive if

R ∈ S ∈ T ⇒ R ∈ T.

Theorem. Every natural number is transitive.
Proof. (Induction.)

1 (Basis of Induction) 0 is transitive. (Reason?)
2 (Inductive Step) Assume that k is transitive. Let’s check that S(k) is

transitive:
A ∈ B ∈ S(k) = k ∪ {k}

implies A ∈ B ∈ k (in which case A ∈ k, by IH) or A ∈ B = k. In
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Irreflexivity

Theorem. The relation < is irreflexive on N.

Proof. We prove that n ̸< n holds for all n by induction.

1 (Basis of Induction) 0 ̸< 0. (Reason?)
2 (Inductive Step) Assume that k ̸< k. Assume that

S(k) < S(k) = k ∪ {k}. Then k ∈ S(k) ∈ k ∪ {k}, so k ∈ k, contrary
to k ̸< k. 2

Corollary. The relation < is irreflexive and transitive on N, hence is a strict
order on N.

Comment. The Axiom of Foundation provides a simpler proof. If n < n,
then {n} has no ∈-minimal element.
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Trichotomy

Theorem. For any m, n ∈ N, m < n or m = n or n < m.

Proof. We prove by induction on n the statement that, for all m ∈ N, m < n
or m = n or n < m.

1 (Basis of Induction) The statement is true for n = 0 by the earlier
lemma: (0 ≤ n).

2 (Inductive Step) Assume that k is comparable with all natural numbers.
We must show that S(k) is comparable with any m ∈ N. If m ≤ k, then
m < k ∪ {k} = S(k). If k < m, then S(k) ≤ m by the earlier lemma. 2

Corollary. The relation < is a strict total order on N.
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Well-order

Definition. A partially ordered set ⟨P ; <⟩ is a well-order if every nonempty
subset of P has a <-least element.

Theorem. ⟨N; <⟩ is a well-order.

Proof. Assume not. Let Q ⊆ N be a nonempty subset of N that has no <-least
element. Let B ⊆ N be the set of all strict lower bounds of Q.
(B = {b ∈ N |; (∀q ∈ Q)(b < q)}.)

1 B ⊆ N.
2 0 ∈ B.
3 B is closed under successor.

Hence B = N. But this contradicts: B, Q ⊆ N, B ∩ Q = ∅ and Q ̸= ∅. 2

Comment. The Axiom of Foundation provides a simpler proof. If
∅ ≠ Q ⊆ N, then any ∈-minimal element of Q is a <-least element.
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