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Proof. We prove that n £ n holds for all n by induction.
© (Basis of Induction) 0 £ 0. (Reason?)

@ (Inductive Step) Assume that k £ k. Assume that
S(k) < S(k)=kU{k}. Thenk € S(k) € kU{k}, so k € k, contrary
tok £ k. O

Corollary. The relation < is irreflexive and transitive on N, hence is a strict
order on N.

Comment. The Axiom of Foundation provides a simpler proof. If n < n,
then {n} has no €-minimal element.
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Corollary. The relation < is a strict total order on N.
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Comment. The Axiom of Foundation provides a simpler proof. If
() # @ C N, then any €-minimal element of () is a <-least element.
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