The Order on $\ensuremath{\mathbb{N}}$

Let's write $m \leq n$ to mean m < n or m = n.

Let's write $m \leq n$ to mean m < n or m = n.

Let's write $m \leq n$ to mean m < n or m = n.

Lemma.

• For all $k, n \in \mathbb{N}$,

Let's write $m \leq n$ to mean m < n or m = n.

Lemma.

• For all $k, n \in \mathbb{N}$,

Let's write $m \leq n$ to mean m < n or m = n.

Lemma.

• For all $k, n \in \mathbb{N}, k < S(n)$

Let's write $m \leq n$ to mean m < n or m = n.

Lemma.

• For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n

Let's write $m \leq n$ to mean m < n or m = n.

Lemma.

• For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n iff $k \le n$.

Let's write $m \leq n$ to mean m < n or m = n.

- For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$,

Let's write $m \leq n$ to mean m < n or m = n.

- For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$,

Let's write $m \leq n$ to mean m < n or m = n.

- For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \leq n$.

Let's write $m \leq n$ to mean m < n or m = n.

- For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- If m < n, then $S(m) \le n$.

Let's write $m \leq n$ to mean m < n or m = n.

- For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- If m < n, then $S(m) \le n$.

Let's write $m \leq n$ to mean m < n or m = n.

Lemma.

- $\textbf{ 0 For all } k,n \in \mathbb{N}, k < S(n) \quad \text{iff} \quad k < n \text{ or } k = n \quad \text{iff} \quad k \leq n.$
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

Let's write $m \leq n$ to mean m < n or m = n.

Lemma.

- For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $\ \ \, \textbf{ if } m < n \textbf{, then } S(m) \leq n \textbf{.}$

Proof.

The first item can be proved without induction.

Let's write $m \leq n$ to mean m < n or m = n.

Lemma.

- For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.)

Lemma.

- For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $\ \ \, {\rm if} \ m < n, {\rm then} \ S(m) \leq n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.)

For the second item, prove $\varphi(n): 0 \le n$ by induction.

Lemma.

- For all $k, n \in \mathbb{N}, k < S(n)$ iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.)

For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n.

Lemma.

- For all $k, n \in \mathbb{N}, k < S(n)$ iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.) For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n. The Basis of Induction (n = 0) holds vacuously.

Lemma.

- For all $k, n \in \mathbb{N}, k < S(n)$ iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.) For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n. The Basis of Induction (n = 0) holds vacuously. For the Inductive Step,

Lemma.

- For all $k, n \in \mathbb{N}, k < S(n)$ iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.) For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n. The Basis of Induction (n = 0) holds vacuously. For the Inductive Step, assume that the statement holds for some n = k and that $m \in S(k) = k \cup \{k\}$.

Lemma.

- For all $k, n \in \mathbb{N}, k < S(n)$ iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.) For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n. The Basis of Induction (n = 0) holds vacuously. For the Inductive Step, assume that the statement holds for some n = k and that $m \in S(k) = k \cup \{k\}$. If $m \in k$,

Lemma.

- $\textbf{ 0 For all } k, n \in \mathbb{N}, k < S(n) \quad \text{iff} \quad k < n \text{ or } k = n \quad \text{iff} \quad k \leq n.$
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.) For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n. The Basis of Induction (n = 0) holds vacuously. For the Inductive Step, assume that the statement holds for some n = k and that $m \in S(k) = k \cup \{k\}$. If $m \in k$, then $S(m) \leq k$ by induction,

Lemma.

- $\textbf{ 0 For all } k, n \in \mathbb{N}, k < S(n) \quad \text{iff} \quad k < n \text{ or } k = n \quad \text{iff} \quad k \leq n.$
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.) For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n. The Basis of Induction (n = 0) holds vacuously. For the Inductive Step, assume that the statement holds for some n = k and that $m \in S(k) = k \cup \{k\}$. If $m \in k$, then $S(m) \leq k$ by induction, so $S(m) \in S(k)$,

Lemma.

- For all $k, n \in \mathbb{N}$, k < S(n) iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.) For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n. The Basis of Induction (n = 0) holds vacuously. For the Inductive Step, assume that the statement holds for some n = k and that $m \in S(k) = k \cup \{k\}$. If $m \in k$, then $S(m) \leq k$ by induction, so $S(m) \in S(k)$, so $S(m) \leq S(k)$.

Lemma.

- For all $k, n \in \mathbb{N}, k < S(n)$ iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.) For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n. The Basis of Induction (n = 0) holds vacuously. For the Inductive Step, assume that the statement holds for some n = k and that $m \in S(k) = k \cup \{k\}$. If $m \in k$, then $S(m) \leq k$ by induction, so $S(m) \in S(k)$, so $S(m) \leq S(k)$. If m = k, then $S(m) \leq S(k)$.

Lemma.

- $\textbf{ 0 For all } k, n \in \mathbb{N}, k < S(n) \quad \text{iff} \quad k < n \text{ or } k = n \quad \text{iff} \quad k \leq n.$
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.) For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n. The Basis of Induction (n = 0) holds vacuously. For the Inductive Step, assume that the statement holds for some n = k and that $m \in S(k) = k \cup \{k\}$. If $m \in k$, then $S(m) \leq k$ by induction, so $S(m) \in S(k)$, so $S(m) \leq S(k)$. If m = k, then $S(m) \leq S(k)$. In either case, the statement holds for n = S(k).

Lemma.

- For all $k, n \in \mathbb{N}, k < S(n)$ iff k < n or k = n iff $k \le n$.
- **2** For all $n \in \mathbb{N}$, $0 \le n$.
- $If m < n, then S(m) \le n.$

Proof.

The first item can be proved without induction. (Just use $S(n) = n \cup \{n\}$.) For the second item, prove $\varphi(n) : 0 \le n$ by induction.

The third item can be proved by induction on n. The Basis of Induction (n = 0) holds vacuously. For the Inductive Step, assume that the statement holds for some n = k and that $m \in S(k) = k \cup \{k\}$. If $m \in k$, then $S(m) \leq k$ by induction, so $S(m) \in S(k)$, so $S(m) \leq S(k)$. If m = k, then $S(m) \leq S(k)$. In either case, the statement holds for n = S(k). \Box

Definition.

 $R \in S \in T \Rightarrow R \in T.$

 $R \in S \in T \Rightarrow R \in T.$

Theorem.

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive.

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.*

$$R \in S \in T \Rightarrow R \in T.$$

Definition. A set *T* is *transitive* if

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

(Basis of Induction)

Definition. A set *T* is *transitive* if

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

(Basis of Induction)

Definition. A set *T* is *transitive* if

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

(Basis of Induction) 0 is transitive.

Definition. A set *T* is *transitive* if

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

(Basis of Induction) 0 is transitive. (Reason?)

Definition. A set T is *transitive* if

$$R \in S \in T \Rightarrow R \in T.$$

- **(**Basis of Induction) 0 is transitive. (Reason?)
- **2** (Inductive Step) Assume that k is transitive.

Definition. A set T is *transitive* if

$$R \in S \in T \Rightarrow R \in T.$$

- **(**Basis of Induction) 0 is transitive. (Reason?)
- **2** (Inductive Step) Assume that k is transitive.

Definition. A set *T* is *transitive* if

$$R \in S \in T \Rightarrow R \in T.$$

- **(**Basis of Induction) 0 is transitive. (Reason?)
- (Inductive Step) Assume that k is transitive. Let's check that S(k) is transitive:

Definition. A set *T* is *transitive* if

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

- **(**Basis of Induction) 0 is transitive. (Reason?)
- (Inductive Step) Assume that k is transitive. Let's check that S(k) is transitive:

 $A \in B \in S(k)$

$$R \in S \in T \Rightarrow R \in T.$$

- **(**Basis of Induction) 0 is transitive. (Reason?)
- (Inductive Step) Assume that k is transitive. Let's check that S(k) is transitive:

$$A \in B \in S(k) = k \cup \{k\}$$

Definition. A set *T* is *transitive* if

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

- **(**Basis of Induction) 0 is transitive. (Reason?)
- (Inductive Step) Assume that k is transitive. Let's check that S(k) is transitive:

$$A \in B \in S(k) = k \cup \{k\}$$

implies $A \in B \in k$

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

- **(**Basis of Induction) 0 is transitive. (Reason?)
- (Inductive Step) Assume that k is transitive. Let's check that S(k) is transitive:

$$A \in B \in S(k) = k \cup \{k\}$$

implies $A \in B \in k$ (in which case $A \in k$, by IH)

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

- **(**Basis of Induction) 0 is transitive. (Reason?)
- (Inductive Step) Assume that k is transitive. Let's check that S(k) is transitive:

$$A \in B \in S(k) = k \cup \{k\}$$

implies $A \in B \in k$ (in which case $A \in k$, by IH) or $A \in B = k$.

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

- **(**Basis of Induction) 0 is transitive. (Reason?)
- (Inductive Step) Assume that k is transitive. Let's check that S(k) is transitive:

$$A \in B \in S(k) = k \cup \{k\}$$

implies $A \in B \in k$ (in which case $A \in k$, by IH) or $A \in B = k$. In either case, $A \in k$, so $A \in k \cup \{k\} = S(k)$.

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

- **(**Basis of Induction) 0 is transitive. (Reason?)
- (Inductive Step) Assume that k is transitive. Let's check that S(k) is transitive:

$$A \in B \in S(k) = k \cup \{k\}$$

implies $A \in B \in k$ (in which case $A \in k$, by IH) or $A \in B = k$. In either case, $A \in k$, so $A \in k \cup \{k\} = S(k)$. \Box

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

- **(**Basis of Induction) 0 is transitive. (Reason?)
- (Inductive Step) Assume that k is transitive. Let's check that S(k) is transitive:

$$A\in B\in S(k)=k\cup\{k\}$$

implies $A \in B \in k$ (in which case $A \in k$, by IH) or $A \in B = k$. In either case, $A \in k$, so $A \in k \cup \{k\} = S(k)$. \Box

Corollary.

$$R \in S \in T \Rightarrow R \in T.$$

Theorem. Every natural number is transitive. *Proof.* (Induction.)

- **(**Basis of Induction) 0 is transitive. (Reason?)
- (Inductive Step) Assume that k is transitive. Let's check that S(k) is transitive:

$$A \in B \in S(k) = k \cup \{k\}$$

implies $A \in B \in k$ (in which case $A \in k$, by IH) or $A \in B = k$. In either case, $A \in k$, so $A \in k \cup \{k\} = S(k)$. \Box

Corollary. The relation < is transitive on \mathbb{N} .

Theorem.

Theorem. The relation < is irreflexive on \mathbb{N} .

Theorem. The relation < is irreflexive on \mathbb{N} .

Proof.

Theorem. The relation < is irreflexive on \mathbb{N} .

Theorem. The relation < is irreflexive on \mathbb{N} .

Proof. We prove that n ≮ n holds for all n by induction.
(Basis of Induction)

Theorem. The relation < is irreflexive on \mathbb{N} .

Proof. We prove that n ≮ n holds for all n by induction.
(Basis of Induction)

Theorem. The relation < is irreflexive on \mathbb{N} .

Proof. We prove that $n \not< n$ holds for all n by induction.

(Basis of Induction) $0 \neq 0$.

Theorem. The relation < is irreflexive on \mathbb{N} .

Proof. We prove that $n \not< n$ holds for all n by induction.

(Basis of Induction) $0 \neq 0$. (Reason?)

Theorem. The relation < is irreflexive on \mathbb{N} .

- **(**Basis of Induction) $0 \neq 0$. (Reason?)
- **2** (Inductive Step) Assume that $k \neq k$.

Theorem. The relation < is irreflexive on \mathbb{N} .

- **(**Basis of Induction) $0 \neq 0$. (Reason?)
- **2** (Inductive Step) Assume that $k \neq k$.

Theorem. The relation < is irreflexive on \mathbb{N} .

- **(**Basis of Induction) $0 \neq 0$. (Reason?)
- (Inductive Step) Assume that k ≮ k. Assume that S(k) < S(k)

Theorem. The relation < is irreflexive on \mathbb{N} .

- **(**Basis of Induction) $0 \neq 0$. (Reason?)
- (Inductive Step) Assume that k ≮ k. Assume that S(k) < S(k) = k ∪ {k}.

Theorem. The relation < is irreflexive on \mathbb{N} .

- **(**Basis of Induction) $0 \neq 0$. (Reason?)
- (Inductive Step) Assume that $k \not< k$. Assume that $S(k) < S(k) = k \cup \{k\}$. Then $k \in S(k) \in k \cup \{k\}$,

Theorem. The relation < is irreflexive on \mathbb{N} .

- **(**Basis of Induction) $0 \neq 0$. (Reason?)
- (Inductive Step) Assume that $k \not< k$. Assume that $S(k) < S(k) = k \cup \{k\}$. Then $k \in S(k) \in k \cup \{k\}$, so $k \in k$,

Theorem. The relation < is irreflexive on \mathbb{N} .

- **(Basis of Induction)** $0 \neq 0$. (Reason?)
- Inductive Step) Assume that k ≤ k. Assume that
 S(k) < S(k) = k ∪ {k}. Then k ∈ S(k) ∈ k ∪ {k}, so k ∈ k, contrary to k ≤ k.

Theorem. The relation < is irreflexive on \mathbb{N} .

- **(**Basis of Induction) $0 \neq 0$. (Reason?)
- Inductive Step) Assume that k ≤ k. Assume that
 S(k) < S(k) = k ∪ {k}. Then k ∈ S(k) ∈ k ∪ {k}, so k ∈ k, contrary to k ≤ k. □

Theorem. The relation < is irreflexive on \mathbb{N} .

Proof. We prove that $n \not< n$ holds for all n by induction.

- (Basis of Induction) $0 \neq 0$. (Reason?)
- (Inductive Step) Assume that k ≤ k. Assume that
 S(k) < S(k) = k ∪ {k}. Then k ∈ S(k) ∈ k ∪ {k}, so k ∈ k, contrary to k ≤ k. □

Corollary.

Theorem. The relation < is irreflexive on \mathbb{N} .

Proof. We prove that $n \not< n$ holds for all n by induction.

- **(**Basis of Induction) $0 \neq 0$. (Reason?)
- Inductive Step) Assume that k ≤ k. Assume that
 S(k) < S(k) = k ∪ {k}. Then k ∈ S(k) ∈ k ∪ {k}, so k ∈ k, contrary to k ≤ k. □

Corollary. The relation < is irreflexive and transitive on \mathbb{N} , hence is a strict order on \mathbb{N} .

Irreflexivity

Theorem. The relation < is irreflexive on \mathbb{N} .

Proof. We prove that $n \not< n$ holds for all n by induction.

- **(Basis of Induction)** $0 \neq 0$. (Reason?)
- Inductive Step) Assume that k ≤ k. Assume that
 S(k) < S(k) = k ∪ {k}. Then k ∈ S(k) ∈ k ∪ {k}, so k ∈ k, contrary to k ≤ k. □

Corollary. The relation < is irreflexive and transitive on \mathbb{N} , hence is a strict order on \mathbb{N} .

Comment.

Irreflexivity

Theorem. The relation < is irreflexive on \mathbb{N} .

Proof. We prove that $n \not< n$ holds for all n by induction.

- **(**Basis of Induction) $0 \neq 0$. (Reason?)
- Inductive Step) Assume that k ≤ k. Assume that
 S(k) < S(k) = k ∪ {k}. Then k ∈ S(k) ∈ k ∪ {k}, so k ∈ k, contrary to k ≤ k. □

Corollary. The relation < is irreflexive and transitive on \mathbb{N} , hence is a strict order on \mathbb{N} .

Comment. The Axiom of Foundation provides a simpler proof.

Irreflexivity

Theorem. The relation < is irreflexive on \mathbb{N} .

Proof. We prove that $n \not< n$ holds for all n by induction.

- **(**Basis of Induction) $0 \neq 0$. (Reason?)
- Inductive Step) Assume that k ≤ k. Assume that
 S(k) < S(k) = k ∪ {k}. Then k ∈ S(k) ∈ k ∪ {k}, so k ∈ k, contrary to k ≤ k. □

Corollary. The relation < is irreflexive and transitive on \mathbb{N} , hence is a strict order on \mathbb{N} .

Comment. The Axiom of Foundation provides a simpler proof. If n < n, then $\{n\}$ has no \in -minimal element.

Theorem.

Theorem. For any $m, n \in \mathbb{N}$,

Theorem. For any $m, n \in \mathbb{N}$, m < n

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Proof.

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}$, m < n

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}$, m < n or m = n or n < m.

(Basis of Induction)

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}$, m < n or m = n or n < m.

(Basis of Induction)

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}$, m < n or m = n or n < m.

(Basis of Induction) The statement is true for n = 0 by the earlier lemma:

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}$, m < n or m = n or n < m.

(Basis of Induction) The statement is true for n = 0 by the earlier lemma: (0 ≤ n).

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

- (Basis of Induction) The statement is true for n = 0 by the earlier lemma: (0 ≤ n).
- \bigcirc (Inductive Step) Assume that k is comparable with all natural numbers.

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

- (Basis of Induction) The statement is true for n = 0 by the earlier lemma: (0 ≤ n).
- \bigcirc (Inductive Step) Assume that k is comparable with all natural numbers.

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

- (Basis of Induction) The statement is true for n = 0 by the earlier lemma: (0 ≤ n).
- (Inductive Step) Assume that k is comparable with all natural numbers. We must show that S(k) is comparable with any $m \in \mathbb{N}$.

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

- (Basis of Induction) The statement is true for n = 0 by the earlier lemma: (0 ≤ n).
- Q (Inductive Step) Assume that k is comparable with all natural numbers. We must show that S(k) is comparable with any m ∈ N. If m ≤ k, then m < k ∪ {k} = S(k).

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

- (Basis of Induction) The statement is true for n = 0 by the earlier lemma: (0 ≤ n).
- ② (Inductive Step) Assume that k is comparable with all natural numbers. We must show that S(k) is comparable with any m ∈ N. If m ≤ k, then $m < k \cup \{k\} = S(k)$. If k < m, then S(k) ≤ m by the earlier lemma.</p>

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

- (Basis of Induction) The statement is true for n = 0 by the earlier lemma: (0 ≤ n).
- Q (Inductive Step) Assume that k is comparable with all natural numbers. We must show that S(k) is comparable with any m ∈ N. If m ≤ k, then m < k ∪ {k} = S(k). If k < m, then S(k) ≤ m by the earlier lemma. □

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}$, m < n or m = n or n < m.

- (Basis of Induction) The statement is true for n = 0 by the earlier lemma: (0 ≤ n).
- Q (Inductive Step) Assume that k is comparable with all natural numbers. We must show that S(k) is comparable with any m ∈ N. If m ≤ k, then m < k ∪ {k} = S(k). If k < m, then S(k) ≤ m by the earlier lemma. □

Corollary.

Theorem. For any $m, n \in \mathbb{N}$, m < n or m = n or n < m.

Proof. We prove by induction on n the statement that, for all $m \in \mathbb{N}$, m < n or m = n or n < m.

- (Basis of Induction) The statement is true for n = 0 by the earlier lemma: (0 ≤ n).
- Q (Inductive Step) Assume that k is comparable with all natural numbers. We must show that S(k) is comparable with any m ∈ N. If m ≤ k, then m < k ∪ {k} = S(k). If k < m, then S(k) ≤ m by the earlier lemma. □

Corollary. The relation < is a strict total order on \mathbb{N} .

Definition.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid ; (\forall q \in Q)(b < q)\}.)$

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid ; (\forall q \in Q)(b < q)\}.)$ $B \subset \mathbb{N}.$

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid ; (\forall q \in Q)(b < q)\}.)$ $B \subset \mathbb{N}.$

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid ; (\forall q \in Q) (b < q)\}.)$

- $\textcircled{0} 0 \in B.$

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid ; (\forall q \in Q) (b < q)\}.)$

- $\textcircled{0} 0 \in B.$

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $0 \in B.$
- \bigcirc *B* is closed under successor.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $0 \in B.$
- \bigcirc *B* is closed under successor.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $\ B \subseteq \mathbb{N}.$
- $\bigcirc 0 \in B.$
- \bigcirc *B* is closed under successor.

Hence $B = \mathbb{N}$.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $0 \in B.$
- \bigcirc *B* is closed under successor.
- Hence $B = \mathbb{N}$. But this contradicts:

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $\bigcirc 0 \in B.$
- \bigcirc *B* is closed under successor.

Hence $B = \mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}$,

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $\bigcirc 0 \in B.$
- \bigcirc *B* is closed under successor.

Hence $B = \mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q = \emptyset$

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $\bigcirc 0 \in B.$
- \bigcirc *B* is closed under successor.

Hence $B = \mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q = \emptyset$ and $Q \neq \emptyset$.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $\bigcirc 0 \in B.$
- \bigcirc *B* is closed under successor.

Hence $B = \mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q = \emptyset$ and $Q \neq \emptyset$. \Box

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $\bigcirc 0 \in B.$
- \bigcirc *B* is closed under successor.

Hence $B = \mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q = \emptyset$ and $Q \neq \emptyset$. \Box

Comment.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $\bigcirc 0 \in B.$
- \bigcirc *B* is closed under successor.

Hence $B = \mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q = \emptyset$ and $Q \neq \emptyset$. \Box

Comment. The Axiom of Foundation provides a simpler proof.

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $\bigcirc 0 \in B.$
- \bigcirc *B* is closed under successor.

Hence $B = \mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q = \emptyset$ and $Q \neq \emptyset$. \Box

Comment. The Axiom of Foundation provides a simpler proof. If $\emptyset \neq Q \subseteq \mathbb{N}$,

Definition. A partially ordered set $\langle P; < \rangle$ is a *well-order* if every nonempty subset of P has a <-least element.

Theorem. $\langle \mathbb{N}; \langle \rangle$ is a well-order.

Proof. Assume not. Let $Q \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N} that has no <-least element. Let $B \subseteq \mathbb{N}$ be the set of all strict lower bounds of Q. $(B = \{b \in \mathbb{N} \mid : (\forall q \in Q) (b < q)\}.)$

- $B \subseteq \mathbb{N}.$
- $\bigcirc 0 \in B.$
- \bigcirc *B* is closed under successor.

Hence $B = \mathbb{N}$. But this contradicts: $B, Q \subseteq \mathbb{N}, B \cap Q = \emptyset$ and $Q \neq \emptyset$. \Box

Comment. The Axiom of Foundation provides a simpler proof. If $\emptyset \neq Q \subseteq \mathbb{N}$, then any \in -minimal element of Q is a <-least element.