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|N| ≤ |X|

We proved that if |N| ≤ |X|, then X is infinite. We next prove the converse in
ZFC, but explain why the Axiom of Choice is required.

Definition. A set X is Dedekind infinite if there is a function g : X → X
that is injective but not surjective. Otherwise X is Dedekind finite.

Observe.

1 If |X| = |Y |, and X is Dedekind infinite, then so is Y .
2 The Baby Pigeonhole Principle proves that every natural number is

Dedekind finite. Hence every finite set is Dedekind finite.
3 If |N| ≤ |X|, then X is Dedekind infinite.

If f : N → X is injective, then

g(x) =
{

f(S(n)) if x = f(n)
x if x /∈ im(f)

is also injective. f(0) /∈ im(g), so g is not surjective.
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|N| ≤ |X| iff X is Dedekind infinite

We have seen that |N| ≤ |X| implies that X is Dedekind infinite. We can use the
Recursion Theorem to prove the converse. If g : X → X is injective and not

surjective, choose a ∈ X − g(X). Define f : N → X by

f(0) = a.

f(S(n)) = g(f(n)).

The Recursion Theorem guarantees that f : N → X is a function. We can prove by
induction on n that “m < n implies f(m) ̸= f(n)”.

(Basis of Induction.) Must prove that “m < 0 implies f(m) ̸= f(0)”.

(Inductive step.) Assume the statement is true for n. Assume that m < S(n).
Case 1. If m = 0, then f(m) = f(0) = a /∈ im(g), while
f(S(n)) = g(f(n)) ∈ im(g). Thus f(m) ̸= f(S(n)).
Case 2. If m ̸= 0, then m = S(k) for some k < m (≤ n). If f(m) = f(S(n)), then
f(S(k))) = f(S(n)), hence g(f(k)) = g(f(n)). Since g is injective, this yields
f(k) = f(n) for some k < n, contradicting the Inductive Hypothesis. 2
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Amorphous sets

Amorphous sets. A set A is amorphous if it is infinite, but it cannot be
partitioned into two infinite subsets.

Equivalently, A is amorphous if A is infinite, but every subset of A is either
finite or cofinite.

The existence of amorphous sets has been shown to be consistent with ZF
(Fraenkel, Jech-Sochor), but not with ZFC.

Notice that N is not amorphous. Also, if A is amorphous and |B| ≤ |A|, then
B is amorphous or finite. In particular, if A is amorphous, then |N| ̸≤ |A|.
Thus, if A is amorphous, then A is infinite, but not Dedekind infinite.

We will prove that “infinite = Dedekind infinite” in ZFC, but the example of
amorphous sets shows that the Axiom of Choice cannot be avoided.
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“infinite = Dedekind infinite” in ZFC, I

Every Dedekind infinite set is infinite: Must show that |N| ≤ |A| implies A is
infinite. Assume not. There must be a finite set A with an injective function
f : N → A. im(f) is an infinite subset of the finite set A. This contradicts the
following theorem:

Theorem. Any subset of a finite set is finite.

Proof. Modify the proof of the Baby Pigeonhole Principle. 2
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“infinite = Dedekind infinite” in ZFC, II

Theorem. (ZFC) If A is infinite, then |N| ≤ |A|.

Proof. Since A is infinite, it has an element. Let a ∈ A be one. Let γ be a
choice function for A. (That is, for P(A) \ {∅}.) The Recursion Theorem
(course-of-values version, Theorem 3.5, page 50) guarantees the existence of
a function f : N → A satisfying

1 f(0) = a,
2 f(S(n)) = γ(A − im(f |S(n))).

Such a function witnesses that |N| ≤ |A|. 2
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