## Reformulations of the Axiom of Choice

## The axiom

## Axiom of Choice (AC).

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element. Since introducing this axiom, we have introduced the notion of a partition.

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$.

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

Every partition has a transversal.

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

Every partition has a transversal.
A "transversal" for a partition $\Pi$ of $X$ means either

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

> Every partition has a transversal.

A "transversal" for a partition $\Pi$ of $X$ means either
(1) a set $T \subseteq X$ such that $T$ contains exactly one element from each cell of $\Pi$,

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

> Every partition has a transversal.

A "transversal" for a partition $\Pi$ of $X$ means either
(1) a set $T \subseteq X$ such that $T$ contains exactly one element from each cell of $\Pi$,

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

> Every partition has a transversal.

A "transversal" for a partition $\Pi$ of $X$ means either
(1) a set $T \subseteq X$ such that $T$ contains exactly one element from each cell of $\Pi$, or

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

## Every partition has a transversal.

A "transversal" for a partition $\Pi$ of $X$ means either
(1) a set $T \subseteq X$ such that $T$ contains exactly one element from each cell of $\Pi$, or
(2) a function $t: \Pi \rightarrow X$ such that $\operatorname{im}(t)$ contains exactly one element from each cell of $\Pi$.

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

## Every partition has a transversal.

A "transversal" for a partition $\Pi$ of $X$ means either
(1) a set $T \subseteq X$ such that $T$ contains exactly one element from each cell of $\Pi$, or
(2) a function $t: \Pi \rightarrow X$ such that $\operatorname{im}(t)$ contains exactly one element from each cell of $\Pi$.

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

## Every partition has a transversal.

A "transversal" for a partition $\Pi$ of $X$ means either
(1) a set $T \subseteq X$ such that $T$ contains exactly one element from each cell of $\Pi$, or
(2) a function $t: \Pi \rightarrow X$ such that $\operatorname{im}(t)$ contains exactly one element from each cell of $\Pi$.

That is,

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

## Every partition has a transversal.

A "transversal" for a partition $\Pi$ of $X$ means either
(1) a set $T \subseteq X$ such that $T$ contains exactly one element from each cell of $\Pi$, or
(2) a function $t: \Pi \rightarrow X$ such that $\operatorname{im}(t)$ contains exactly one element from each cell of $\Pi$.

That is, a "transversal" for $\Pi$ is either a "choice set" for $\Pi$

## The axiom

Axiom of Choice (AC). Given a set $A$ of nonempty, pairwise-disjoint sets, there is a set $C$ that intersects each element of $A$ in exactly one element.

Since introducing this axiom, we have introduced the notion of a partition. A partition of a set $X$ is a set $\Pi=\left\{X_{i} \subseteq X \mid i \in I\right\}$ of nonempty, pairwise-disjoint subsets of $X$ whose union is $X$. Using this language, we may reformulate AC as:

## Every partition has a transversal.

A "transversal" for a partition $\Pi$ of $X$ means either
(1) a set $T \subseteq X$ such that $T$ contains exactly one element from each cell of $\Pi$, or
(2) a function $t: \Pi \rightarrow X$ such that $\operatorname{im}(t)$ contains exactly one element from each cell of $\Pi$.

That is, a "transversal" for $\Pi$ is either a "choice set" for $\Pi$ or a "choice function" for $\Pi$.

## A "section" of a surjective function

## A "section" of a surjective function

A section of a surjective function $f: X \rightarrow Y$ is a right inverse of the function:

## A "section" of a surjective function

A section of a surjective function $f: X \rightarrow Y$ is a right inverse of the function: $s: Y \rightarrow X$ such that $f \circ s=\operatorname{id}_{Y}$.

## A "section" of a surjective function

A section of a surjective function $f: X \rightarrow Y$ is a right inverse of the function: $s: Y \rightarrow X$ such that $f \circ s=\operatorname{id}_{Y}$. The natural map for a partition,

## A "section" of a surjective function

A section of a surjective function $f: X \rightarrow Y$ is a right inverse of the function: $s: Y \rightarrow X$ such that $f \circ s=\operatorname{id}_{Y}$. The natural map for a partition,

$$
\nu_{\Pi}: X \rightarrow \Pi: x \mapsto[x]_{\Pi}
$$

is surjective.

## A "section" of a surjective function

A section of a surjective function $f: X \rightarrow Y$ is a right inverse of the function: $s: Y \rightarrow X$ such that $f \circ s=\operatorname{id}_{Y}$. The natural map for a partition,

$$
\nu_{\Pi}: X \rightarrow \Pi: x \mapsto[x]_{\Pi}
$$

is surjective. A "section of $\nu_{\Pi}$ " means the same thing as "a transversal for $\Pi$ ".

## A "section" of a surjective function

A section of a surjective function $f: X \rightarrow Y$ is a right inverse of the function: $s: Y \rightarrow X$ such that $f \circ s=\operatorname{id}_{Y}$. The natural map for a partition,

$$
\nu_{\Pi}: X \rightarrow \Pi: x \mapsto[x]_{\Pi}
$$

is surjective. A "section of $\nu_{\Pi}$ " means the same thing as "a transversal for $\Pi$ ".


## First reformulations of AC

## First reformulations of AC

## ZFC

## First reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC}$

## First reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+($ any of these $):$

## First reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+($ any of these $):$
(1) Every partition has a transversal

## First reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+($ any of these $):$
(1) Every partition has a transversal

## First reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+$ (any of these) $:$
(1) Every partition has a transversal (= choice set).

## First reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+$ (any of these) $:$
(1) Every partition has a transversal (= choice set).
(2) Every partition has a transversal

## First reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+$ (any of these) $:$
(1) Every partition has a transversal (= choice set).
(2) Every partition has a transversal

## First reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+$ (any of these) $:$
(1) Every partition has a transversal (= choice set).
(2) Every partition has a transversal (= choice function).

## First reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+($ any of these $):$
(1) Every partition has a transversal (= choice set).
(2) Every partition has a transversal (= choice function).
(3) Every surjective function has a section.

## Choice for set systems that are not partitions (page 139, HJ)

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets.

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition),

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$,

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets,

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, , then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

## Example.

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}$

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}=$ a partition.

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}=$ a partition.

## Questions.

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}=$ a partition.

## Questions.

(0) How do we construct $\widehat{A}$ from $A$, in general?

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}=$ a partition.

## Questions.

(0) How do we construct $\widehat{A}$ from $A$, in general?

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}=$ a partition.

## Questions.

(1) How do we construct $\widehat{A}$ from $A$, in general?

$$
F: A \rightarrow \mathcal{P}((\cup A) \times A)
$$

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}=$ a partition.

## Questions.

(0) How do we construct $\widehat{A}$ from $A$, in general?

$$
F: A \rightarrow \mathcal{P}((\cup A) \times A): X \mapsto X \times\{X\} ;
$$

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}=$ a partition.

## Questions.

(1) How do we construct $\widehat{A}$ from $A$, in general?

$$
F: A \rightarrow \mathcal{P}((\cup A) \times A): X \mapsto X \times\{X\} ; \quad \widehat{A}:=\operatorname{im}(F) .
$$

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}=$ a partition.

## Questions.

(1) How do we construct $\widehat{A}$ from $A$, in general?

$$
F: A \rightarrow \mathcal{P}((\cup A) \times A): X \mapsto X \times\{X\} ; \quad \widehat{A}:=\operatorname{im}(F) .
$$

(0) How do we then construct $c$ from $\widehat{c}$ ?

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}=$ a partition.

## Questions.

(1) How do we construct $\widehat{A}$ from $A$, in general?

$$
F: A \rightarrow \mathcal{P}((\cup A) \times A): X \mapsto X \times\{X\} ; \quad \widehat{A}:=\operatorname{im}(F) .
$$

(0) How do we then construct $c$ from $\widehat{c}$ ?

## Choice for set systems that are not partitions (page 139, HJ)

Assume that $A$ is a set of nonempty sets. We can create a corresponding set $\widehat{A}$ of pairwise disjoint nonempty sets (a partition), let $\widehat{c}$ be a choice function for $\widehat{A}$, then use $\widehat{c}$ to create a choice function $c$ for $A$. Thus, using choice functions instead of choice sets, we can generalize our uses of choice from partitions to arbitrary sets of nonempty sets.

Example. Let $A=\{X, Y, Z\}=\left\{\left\{x_{0}, x_{1}\right\},\left\{y_{0}\right\},\left\{z_{0}, z_{1}, z_{2}\right\}\right\}$.
$\widehat{A}=\{X \times\{X\}, Y \times\{Y\}, Z \times\{Z\}\}=$ a partition.

## Questions.

(1) How do we construct $\widehat{A}$ from $A$, in general?

$$
F: A \rightarrow \mathcal{P}((\cup A) \times A): X \mapsto X \times\{X\} ; \quad \widehat{A}:=\operatorname{im}(F) .
$$

(0) How do we then construct $c$ from $\widehat{c}$ ?

$$
c=\pi_{1} \circ \widehat{c} \circ F .
$$

## Formally stronger (but equivalent) reformulations of AC

## Formally stronger (but equivalent) reformulations of AC

ZFC

## Formally stronger (but equivalent) reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC}$

## Formally stronger (but equivalent) reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+$ (any of these) $:$

## Formally stronger (but equivalent) reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+($ any of these $):$
(1) Every set of nonempty sets has a choice function.

## Formally stronger (but equivalent) reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+($ any of these $):$
(1) Every set of nonempty sets has a choice function.

## Formally stronger (but equivalent) reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+($ any of these $):$
(1) Every set of nonempty sets has a choice function.

## Formally stronger (but equivalent) reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+$ (any of these) $:$
(1) Every set of nonempty sets has a choice function.
(2) For every set $A$, the set $\mathcal{P}(A) \backslash\{\emptyset\}$ has a choice function.

## Formally stronger (but equivalent) reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+$ (any of these) $:$
(1) Every set of nonempty sets has a choice function.
(2) For every set $A$, the set $\mathcal{P}(A) \backslash\{\emptyset\}$ has a choice function.

## Formally stronger (but equivalent) reformulations of AC

$\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC} \equiv \mathrm{ZF}+$ (any of these):
(1) Every set of nonempty sets has a choice function.
(2) For every set $A$, the set $\mathcal{P}(A) \backslash\{\emptyset\}$ has a choice function. (Such a function is called a "choice function for $A$ ".)

