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Q |A| = |B| means there is a bijection f: A — B. We read this “The
cardinality of A is equal to the cardinality of B”. When |A| = |B| we say
that A and B are equipotent (= “equal strength”).

@ |A| < |B| means there is an injective map g: A — B.
@ |A| < |B| means |A| < |B|, but |A| # |B|.

Q X is finite if it is equipotent with a natural number.
© X is infinite if it is not finite.

Q X is countably infinite if it is equipotent with w.

@ X is countable if it is finite or countably infinite.

Q X is uncountable if it is not countable.

Examples. Any n € w is finite. w is countably infinite. R is uncountable.

Theorem. (Cantor-Bernstein-Schroder) If |[A| < |B| and |B| < |A|, then

Al = [B].
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Initial ordinals

It follows from the CBS Theorem that equipotence classes of ordinals fall into
intervals, as the next figure indicates.

Equipotence classes of ordinal numbers

Oe—feoeo—— J6—
012 w w1
:wo

The key features of this figure are
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Cardinal numbers

Definition. A cardinal number is an initial ordinal.

When discussing cardinals, it is common to use the symbols Ny, N1, N5 in
place of wy, w1, ws, ETC. N (aleph) is the first letter of the Hebrew alphabet.
We read N as “aleph zero” or “aleph naught”. The first few cardinals are
0,1,2,...,R, Ny, ....

We can refine the Well Ordering Theorem to say:

Theorem. Every set can be enumerated by a unique cardinal number. (For
every set X, there is a unique cardinal x for which there is a bijection
f:rn—X)
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Cantor’s Theorem.

If X is a set, then |X| < |P(X)|.
Theorem.
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Corollary.
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Cantor’s Theorem

The CBS Theorem helps us show two sets have the same cardinality. The
following theorem helps us show two sets have different cardinality.

Cantor’s Theorem.
If X is a set, then |X| < |P(X)|.

Theorem.

IR < [(0,1)] < [P(N)| < [R].
Corollary.

IN| < |P(N)| = |R].
Notation.

@ Fork € N, |A| = k means |A| = |k|. This means that there is a bijection
f: k— A. We say “A has k elements”.

@ Similarly, for any other cardinal , |A| = x means |A| = ||, which

means that there is a bijection f: kK — A. We say “A has x elements” or
“A has xk-many elements”.
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