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Properties of the ordinal numbers

We order ordinals by α < β iff α ∈ β. Some basic properties of ordinals are

1 (Trichotomy) If α and β are ordinals, then exactly one of α < β, α = β,
or β < α must hold. This says that the ordinals are linearly ordered by ∈.

2 Every ordinal is the set of its predecessors.
3 There is no infinite descending chain of ordinals. (Because of the Axiom

of Foundation.)
4 The class of ordinals is “well ordered”. (This means that any nonempty

set X of ordinals has a least element, namely
⋂

X.)
5 (Well Ordering Theorem) Every set can be enumerated by an ordinal.

(That is, for every set X there is an ordinal α and a bijection f : α→ X.)

The Well Ordering Theorem allows us to count any set, but the ordinal α that
appears in it is not unique. For example, there are bijections f : ω → ω and
g : ω + 1→ ω, so ω can be counted by both ω and ω + 1.
This non-uniqueness implies that the ordinal numbers are not appropriate for
measuring size. For this we introduce cardinal numbers.

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . Numbers beyond N 3 / 8
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Equipotence, Finiteness, Countability

1 |A| = |B| means there is a bijection f : A→ B. We read this “The
cardinality of A is equal to the cardinality of B”. When |A| = |B| we say
that A and B are equipotent (= “equal strength”).

2 |A| ≤ |B| means there is an injective map g : A→ B.
3 |A| < |B| means |A| ≤ |B|, but |A| 6= |B|.
4 X is finite if it is equipotent with a natural number.
5 X is infinite if it is not finite.
6 X is countably infinite if it is equipotent with ω.
7 X is countable if it is finite or countably infinite.
8 X is uncountable if it is not countable.

Examples. Any n ∈ ω is finite. ω is countably infinite. R is uncountable.

Theorem. (Cantor-Bernstein-Schröder) If |A| ≤ |B| and |B| ≤ |A|, then
|A| = |B|.
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Initial ordinals

It follows from the CBS Theorem that equipotence classes of ordinals fall into
intervals, as the next figure indicates.

-s s s�� ���� ���� �� �� ��s s s s��
0 1 2 · · · ω

= ω0
ω1

Equipotence classes of ordinal numbers

The key features of this figure are

1 Equipotence classes are intervals. The classes of natural numbers are
singletons.

2 Every equipotence class has a least element. (Such elements are called
initial ordinals.)

3 For every equipotence class, there is a strictly larger class.

To measure size, we pick one ordinal from each equipotence class. Since each
class has a least element, that one is the natural choice.
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Cardinal numbers

Definition. A cardinal number is an initial ordinal.

When discussing cardinals, it is common to use the symbols ℵ0,ℵ1,ℵ2 in
place of ω0, ω1, ω2, ETC. ℵ (aleph) is the first letter of the Hebrew alphabet.
We read ℵ0 as “aleph zero” or “aleph naught”. The first few cardinals are
0, 1, 2, . . . ,ℵ0,ℵ1, . . ..

We can refine the Well Ordering Theorem to say:

Theorem. Every set can be enumerated by a unique cardinal number. (For
every set X, there is a unique cardinal κ for which there is a bijection
f : κ→ X.)

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . Numbers beyond N 6 / 8
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Cantor’s Theorem

The CBS Theorem helps us show two sets have the same cardinality. The
following theorem helps us show two sets have different cardinality.

Cantor’s Theorem.
If X is a set, then |X| < |P(X)|.

Theorem.
|R| ≤ |(0, 1)| ≤ |P(N)| ≤ |R|.

Corollary.
|N| < |P(N)| = |R|.

Notation.

1 For k ∈ N, |A| = k means |A| = |k|. This means that there is a bijection
f : k→ A. We say “A has k elements”.

2 Similarly, for any other cardinal κ, |A| = κ means |A| = |κ|, which
means that there is a bijection f : κ→ A. We say “A has κ elements” or
“A has κ-many elements”.

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . Numbers beyond N 7 / 8
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The Continuum Hypothesis

We know that |N| = ℵ0 < |R|, so |R| = ℵα for some α > 0.

Continuum Hypothesis. (Cantor) |R| = ℵ1.

Theorem. (Gödel, 1940) If ZFC is consistent, then so is ZFC + CH.

Theorem. (Cohen, 1963) If ZFC is consistent, then so is ZFC + ¬ CH.

Conclusion. If the axioms of set theory are consistent, then they are not
strong enough to decide whether |R| = ℵ1. In fact, we also cannot decide
whether |R| = ℵ2 or ℵ3 or ℵ4 or . . ., but we do know that |R| 6= ℵω. (We
cannot decide |R| = ℵω+1,ℵω+2,ℵω+3, . . ..)
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