Stirling numbers and Bell numbers

Definition. The number of partitions of an n-element set into k cells is denoted

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a *Stirling number of the second kind*.

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

•
$$S(3,3) = 1$$
,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

•
$$S(3,3) = 1$$
,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

Examples.

• S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells.

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

Examples.

• S(3,3)=1, since $\{\{0\},\{1\},\{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

- S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2)=3,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

- S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2)=3,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

- S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

- S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2, 02/1,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

- S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2, 02/1, 12/0.
- S(3,1)=1,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

- S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2, 02/1, 12/0.
- S(3,1)=1,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c} n\\k\end{array}\right\}$$
 or $S(n,k)$,

and is called a Stirling number of the second kind.

- S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2, 02/1, 12/0.
- S(3,1) = 1, since we have only 012.

The number of images of injective functions $k \rightarrow n$

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n,

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of coimages of surjective functions $n \to k$

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells,

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells, which is counted by the function S(n, k).

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells, which is counted by the function S(n, k).

In fact, since a surjective function $f: n \to k$ is determined by choice of coimage and choice of induced function,

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n,k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells, which is counted by the function S(n, k).

In fact, since a surjective function $f: n \to k$ is determined by choice of coimage and choice of induced function, the number of surjective functions is $k! \cdot S(n,k)$.

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n,k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells, which is counted by the function S(n, k).

In fact, since a surjective function $f: n \to k$ is determined by choice of coimage and choice of induced function, the number of surjective functions is $k! \cdot S(n,k)$. (See distributions handout!)

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells, which is counted by the function S(n, k).

In fact, since a surjective function $f: n \to k$ is determined by choice of coimage and choice of induced function, the number of surjective functions is $k! \cdot S(n,k)$. (See distributions handout!)

There are many parallels between C(n, k) and S(n, k).

(1)
$$S(n,k) = 0$$
 if $k < 0$ or $k > n$.

(1)
$$S(n,k) = 0$$
 if $k < 0$ or $k > n$.

- (1) S(n,k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.

- (1) S(n,k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.

- (1) S(n,k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

- (1) S(n,k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Theorem.

- (1) S(n,k) = 0 if k < 0 or k > n.
- (2) S(n,n) = 1 and S(n,0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Theorem.

- (1) S(n,k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

S(n, n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

Theorem.

- (1) S(n,k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

S(n,n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells.

Theorem.

- (1) S(n,k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

S(n, n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

Theorem.

- (1) S(n,k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

S(n, n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

For Item (3), count the number of partitions of $\{x_1, x_2, \dots, x_n\}$ into k cells by considering which cell gets x_n .

Theorem.

- (1) S(n, k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

S(n,n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

For Item (3), count the number of partitions of $\{x_1, x_2, \dots, x_n\}$ into k cells by considering which cell gets x_n . There are S(n-1, k-1) partitions in which x_n is isolated.

Theorem.

- (1) S(n, k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

S(n, n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

For Item (3), count the number of partitions of $\{x_1, x_2, \dots, x_n\}$ into k cells by considering which cell gets x_n . There are S(n-1, k-1) partitions in which x_n is isolated. (That is, of the form $\cdots / \cdots / x_n$.)

Theorem.

- (1) S(n, k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

S(n, n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

For Item (3), count the number of partitions of $\{x_1, x_2, \dots, x_n\}$ into k cells by considering which cell gets x_n . There are S(n-1,k-1) partitions in which x_n is isolated. (That is, of the form $\cdots / \cdots / \cdots / x_n$.) There are $C(k,1) \cdot S(n-1,k) = k \cdot S(n-1,k)$ partitions in which x_n is not isolated.

Theorem.

- (1) S(n, k) = 0 if k < 0 or k > n.
- (2) S(n, n) = 1 and S(n, 0) = 0 if n > 0.
- (3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

S(n, n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

For Item (3), count the number of partitions of $\{x_1, x_2, \dots, x_n\}$ into k cells by considering which cell gets x_n . There are S(n-1, k-1) partitions in which x_n is isolated. (That is, of the form $\cdots / \cdots / \cdots / x_n$.) There are $C(k, 1) \cdot S(n-1, k) = k \cdot S(n-1, k)$ partitions in which x_n is not isolated. \square

Binomial Theorem.

Binomial Theorem.

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

Binomial Theorem.

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

Stirling Binomial-type Theorem.

Binomial Theorem.

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

Stirling Binomial-type Theorem.

$$x^n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}},$$

Binomial Theorem.

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

Stirling Binomial-type Theorem.

$$x^{n} = \sum_{k=0}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}},$$
where $x^{\underline{k}} = (x)_{k} = x(x-1) \cdots (x-(k-1)).$

Table of Stirling numbers of the second kind

$n \setminus k$	0	1	2	3	4	5	6	7	8	
0	1	0	0	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	
2	0	1	1	0	0	0	0	0	0	• • • •
3	0	1	3	1	0	0	0	0	0	• • • •
4	0	1	7	6	1	0	0	0	0	
5	0	1	15	25	10	1	0	0	0	
6	0	1	31	90	65	15	1	0	0	
7	0	1	63	301	350	140	21	1	0	
8	0	1	127	966	1701	1050	266	28	1	
:	:	:	:	:	:	:	:	:	:	·

Table of Stirling numbers of the second kind

$n \setminus k$	0	1	2	3	4	5	6	7	8	
0	1	0	0	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	
2	0	1	1	0	0	0	0	0	0	• • •
3	0	1	3	1	0	0	0	0	0	• • •
4	0	1	7	6	1	0	0	0	0	
5	0	1	15	25	10	1	0	0	0	• • •
6	0	1	31	90	65	15	1	0	0	• • •
7	0	1	63	301	350	140	21	1	0	
8	0	1	127	966	1701	1050	266	28	1	
:	:	:	:	:	:	:	:	:	:	·

Each row is a unimodal sequence with maximum occurring for one or two consecutive values around $k \approx \frac{n}{\ln(n)}$.

Table of Stirling numbers of the second kind

$n \setminus k$	0	1	2	3	4	5	6	7	8	
0	1	0	0	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	
2	0	1	1	0	0	0	0	0	0	• • •
3	0	1	3	1	0	0	0	0	0	• • •
4	0	1	7	6	1	0	0	0	0	
5	0	1	15	25	10	1	0	0	0	
6	0	1	31	90	65	15	1	0	0	• • •
7	0	1	63	301	350	140	21	1	0	• • • •
8	0	1	127	966	1701	1050	266	28	1	
:	:	:	:	:	:	:	:	:	:	\ ·

Each row is a unimodal sequence with maximum occurring for one or two consecutive values around $k \approx \frac{n}{\ln(n)}$.

The *n* row sum is denoted B_n and is called the *n*th **Bell number**.

Definition.

Definition. B_n is the number of partitions of n.

Definition. B_n is the number of partitions of n.

Example.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

 $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

 $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$.

 $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

 $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$.

 $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01.

 $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

 $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$.

 $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01.

 $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

0/1/2, 01/2, 02/1, 12/0, 012.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

 $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$.

 $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01.

 $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

$$0/1/2$$
, $01/2$, $02/1$, $12/0$, 012 .

We have seen that $B_n = \sum_{k=0}^n S(n, k)$.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

 $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$.

 $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01.

 $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

$$0/1/2$$
, $01/2$, $02/1$, $12/0$, 012 .

We have seen that $B_n = \sum_{k=0}^n S(n,k)$.

Another interesting relation is $B_{n+1} = \sum_{k=0}^{n} {n \choose k} \cdot B_k$.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

 $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$.

 $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01.

 $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

$$0/1/2$$
, $01/2$, $02/1$, $12/0$, 012 .

We have seen that $B_n = \sum_{k=0}^n S(n, k)$.

Another interesting relation is $B_{n+1} = \sum_{k=0}^{n} {n \choose k} \cdot B_k$.

Proof. Let
$$X = \{x_1, x_2, \dots, x_{n+1}\}.$$

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

 $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$.

 $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01.

 $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

$$0/1/2$$
, $01/2$, $02/1$, $12/0$, 012 .

We have seen that $B_n = \sum_{k=0}^n S(n, k)$.

Another interesting relation is $B_{n+1} = \sum_{k=0}^{n} {n \choose k} \cdot B_k$.

Proof. Let $X = \{x_1, x_2, \dots, x_{n+1}\}$. A partition of X is determined by the choice of the cell $[x_{n+1}]$ (= a subset of X containing x_{n+1}) and a partition of $X - [x_{n+1}]$.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

 $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$.

 $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01.

 $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

$$0/1/2$$
, $01/2$, $02/1$, $12/0$, 012 .

We have seen that $B_n = \sum_{k=0}^n S(n, k)$.

Another interesting relation is $B_{n+1} = \sum_{k=0}^{n} {n \choose k} \cdot B_k$.

Proof. Let $X = \{x_1, x_2, \dots, x_{n+1}\}$. A partition of X is determined by the choice of the cell $[x_{n+1}]$ (= a subset of X containing x_{n+1}) and a partition of $X - [x_{n+1}]$. \square

Which of the following functions grows faster?

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer.

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

$$2^{n-1}\leq B_n\leq n!\leq n^n\leq 2^{n^2}.$$

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer. The functions are already in the appropriate order. That is,

$$2^{n-1}\leq B_n\leq n!\leq n^n\leq 2^{n^2}.$$

• $2^{n-1} \le B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer. The functions are already in the appropriate order. That is,

$$2^{n-1}\leq B_n\leq n!\leq n^n\leq 2^{n^2}.$$

• $2^{n-1} \le B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

$$2^{n-1} \leq B_n \leq n! \leq n^n \leq 2^{n^2}.$$

- $2^{n-1} \le B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_n \le n!$, since we can code a partition as a permutation.

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

$$2^{n-1} \leq B_n \leq n! \leq n^n \leq 2^{n^2}.$$

- $2^{n-1} \le B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_n \le n!$, since we can code a partition as a permutation.

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

$$2^{n-1} \leq B_n \leq n! \leq n^n \leq 2^{n^2}.$$

- $2^{n-1} \le B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_n \le n!$, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

$$2^{n-1} \leq B_n \leq n! \leq n^n \leq 2^{n^2}.$$

- $2^{n-1} \le B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_n \le n!$, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

$$035/14/2 \longrightarrow 53\underline{0}4\underline{1}\underline{2}$$

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer. The functions are already in the appropriate order. That is,

$$2^{n-1} \leq B_n \leq n! \leq n^n \leq 2^{n^2}.$$

- $2^{n-1} \le B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_n \le n!$, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

$$035/14/2 \longrightarrow 53\underline{0}4\underline{1}\underline{2}$$

• $n! \le n^n$, since the latter counts the number of functions $f: n \to n$, while the former only counts the bijections.

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer. The functions are already in the appropriate order. That is,

$$2^{n-1} \leq B_n \leq n! \leq n^n \leq 2^{n^2}.$$

- $2^{n-1} \le B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_n \le n!$, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

$$035/14/2 \longrightarrow 53\underline{0}4\underline{1}\underline{2}$$

• $n! \le n^n$, since the latter counts the number of functions $f: n \to n$, while the former only counts the bijections.

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

$$2^{n-1} \leq B_n \leq n! \leq n^n \leq 2^{n^2}.$$

- $2^{n-1} \le B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_n \le n!$, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

$$035/14/2 \longrightarrow 53\underline{0}4\underline{1}\underline{2}$$

- $n! \le n^n$, since the latter counts the number of functions $f: n \to n$, while the former only counts the bijections.
- $n^n \le 2^{n^2}$, since the latter counts the number of binary relations from n to n, while the former only counts the binary relations that are functions.