Stirling numbers and Bell numbers

Stirling numbers count partitions

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.
Examples.

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.
Examples.

- $S(3,3)=1$,

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.
Examples.

- $S(3,3)=1$,

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.
Examples.

- $S(3,3)=1$, since $\{\{0\},\{1\},\{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells.

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.

Examples.

- $S(3,3)=1$, since $\{\{0\},\{1\},\{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use $0 / 1 / 2$ as shorthand for this partition.)

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.

Examples.

- $S(3,3)=1$, since $\{\{0\},\{1\},\{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use $0 / 1 / 2$ as shorthand for this partition.)
- $S(3,2)=3$,

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.

Examples.

- $S(3,3)=1$, since $\{\{0\},\{1\},\{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use $0 / 1 / 2$ as shorthand for this partition.)
- $S(3,2)=3$,

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.

Examples.

- $S(3,3)=1$, since $\{\{0\},\{1\},\{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use $0 / 1 / 2$ as shorthand for this partition.)
- $S(3,2)=3$, since we have $01 / 2$,

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.

Examples.

- $S(3,3)=1$, since $\{\{0\},\{1\},\{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use $0 / 1 / 2$ as shorthand for this partition.)
- $S(3,2)=3$, since we have $01 / 2,02 / 1$,

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.

Examples.

- $S(3,3)=1$, since $\{\{0\},\{1\},\{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use $0 / 1 / 2$ as shorthand for this partition.)
- $S(3,2)=3$, since we have $01 / 2,02 / 1,12 / 0$.
- $S(3,1)=1$,

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.

Examples.

- $S(3,3)=1$, since $\{\{0\},\{1\},\{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use $0 / 1 / 2$ as shorthand for this partition.)
- $S(3,2)=3$, since we have $01 / 2,02 / 1,12 / 0$.
- $S(3,1)=1$,

Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is denoted

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { or } \quad S(n, k)
$$

and is called a Stirling number of the second kind.

Examples.

- $S(3,3)=1$, since $\{\{0\},\{1\},\{2\}\}$ is the only partition of $\{0,1,2\}$ into 3 cells. (I use $0 / 1 / 2$ as shorthand for this partition.)
- $S(3,2)=3$, since we have $01 / 2,02 / 1,12 / 0$.
- $S(3,1)=1$, since we have only 012 .

$S(n, k)$ is "dual" to $C(n, k)$

$S(n, k)$ is "dual" to $C(n, k)$

The number of images of injective functions $k \rightarrow n$

$S(n, k)$ is "dual" to $C(n, k)$

The number of images of injective functions $k \rightarrow n$ equals the number of k-element subsets of n,

$S(n, k)$ is "dual" to $C(n, k)$

The number of images of injective functions $k \rightarrow n$ equals the number of k-element subsets of n, which is counted by the function $C(n, k)$.

$S(n, k)$ is "dual" to $C(n, k)$

The number of images of injective functions $k \rightarrow n$ equals the number of k-element subsets of n, which is counted by the function $C(n, k)$.

The number of coimages of surjective functions $n \rightarrow k$

$S(n, k)$ is "dual" to $C(n, k)$

The number of images of injective functions $k \rightarrow n$ equals the number of k-element subsets of n, which is counted by the function $C(n, k)$.

The number of coimages of surjective functions $n \rightarrow k$ equals the number of partitions of n into k cells,

$S(n, k)$ is "dual" to $C(n, k)$

The number of images of injective functions $k \rightarrow n$ equals the number of k-element subsets of n, which is counted by the function $C(n, k)$.

The number of coimages of surjective functions $n \rightarrow k$ equals the number of partitions of n into k cells, which is counted by the function $S(n, k)$.

$S(n, k)$ is "dual" to $C(n, k)$

The number of images of injective functions $k \rightarrow n$ equals the number of k-element subsets of n, which is counted by the function $C(n, k)$.

The number of coimages of surjective functions $n \rightarrow k$ equals the number of partitions of n into k cells, which is counted by the function $S(n, k)$.

In fact, since a surjective function $f: n \rightarrow k$ is determined by choice of coimage and choice of induced function,

$S(n, k)$ is "dual" to $C(n, k)$

The number of images of injective functions $k \rightarrow n$ equals the number of k-element subsets of n, which is counted by the function $C(n, k)$.

The number of coimages of surjective functions $n \rightarrow k$ equals the number of partitions of n into k cells, which is counted by the function $S(n, k)$.

In fact, since a surjective function $f: n \rightarrow k$ is determined by choice of coimage and choice of induced function, the number of surjective functions is $k!\cdot S(n, k)$.

$S(n, k)$ is "dual" to $C(n, k)$

The number of images of injective functions $k \rightarrow n$ equals the number of k-element subsets of n, which is counted by the function $C(n, k)$.

The number of coimages of surjective functions $n \rightarrow k$ equals the number of partitions of n into k cells, which is counted by the function $S(n, k)$.

In fact, since a surjective function $f: n \rightarrow k$ is determined by choice of coimage and choice of induced function, the number of surjective functions is $k!\cdot S(n, k)$. (See distributions handout!)

$S(n, k)$ is "dual" to $C(n, k)$

The number of images of injective functions $k \rightarrow n$ equals the number of k-element subsets of n, which is counted by the function $C(n, k)$.

The number of coimages of surjective functions $n \rightarrow k$ equals the number of partitions of n into k cells, which is counted by the function $S(n, k)$.

In fact, since a surjective function $f: n \rightarrow k$ is determined by choice of coimage and choice of induced function, the number of surjective functions is $k!\cdot S(n, k)$. (See distributions handout!)

There are many parallels between $C(n, k)$ and $S(n, k)$.

Recursion

Recursion

Theorem.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.
$S(n, n)=1$ since $0 / 1 / 2 / \cdots / n-1$ is the only partition of n into n cells.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.
$S(n, n)=1$ since $0 / 1 / 2 / \cdots / n-1$ is the only partition of n into n cells.
If $n>0$, then $S(n, 0)=0$, since there can be no partition of n into 0 cells.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.
$S(n, n)=1$ since $0 / 1 / 2 / \cdots / n-1$ is the only partition of n into n cells.
If $n>0$, then $S(n, 0)=0$, since there can be no partition of n into 0 cells.
(The union of the cells must be n.)

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.
$S(n, n)=1$ since $0 / 1 / 2 / \cdots / n-1$ is the only partition of n into n cells.
If $n>0$, then $S(n, 0)=0$, since there can be no partition of n into 0 cells.
(The union of the cells must be n.)
For Item (3), count the number of partitions of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ into k cells by considering which cell gets x_{n}.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.
$S(n, n)=1$ since $0 / 1 / 2 / \cdots / n-1$ is the only partition of n into n cells.
If $n>0$, then $S(n, 0)=0$, since there can be no partition of n into 0 cells.
(The union of the cells must be n.)
For Item (3), count the number of partitions of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ into k cells by considering which cell gets x_{n}. There are $S(n-1, k-1)$ partitions in which x_{n} is isolated.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.
$S(n, n)=1$ since $0 / 1 / 2 / \cdots / n-1$ is the only partition of n into n cells.
If $n>0$, then $S(n, 0)=0$, since there can be no partition of n into 0 cells.
(The union of the cells must be n.)
For Item (3), count the number of partitions of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ into k cells by considering which cell gets x_{n}. There are $S(n-1, k-1)$ partitions in which x_{n} is isolated. (That is, of the form $\cdots / \cdots / \cdots / x_{n}$.)

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.
$S(n, n)=1$ since $0 / 1 / 2 / \cdots / n-1$ is the only partition of n into n cells.
If $n>0$, then $S(n, 0)=0$, since there can be no partition of n into 0 cells.
(The union of the cells must be n.)
For Item (3), count the number of partitions of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ into k cells by considering which cell gets x_{n}. There are $S(n-1, k-1)$ partitions in which x_{n} is isolated. (That is, of the form $\cdots / \cdots / \cdots / x_{n}$.) There are $C(k, 1) \cdot S(n-1, k)=k \cdot S(n-1, k)$ partitions in which x_{n} is not isolated.

Recursion

Theorem.

(1) $S(n, k)=0$ if $k<0$ or $k>n$.
(2) $S(n, n)=1$ and $S(n, 0)=0$ if $n>0$.
(3) $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$.

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.
$S(n, n)=1$ since $0 / 1 / 2 / \cdots / n-1$ is the only partition of n into n cells.
If $n>0$, then $S(n, 0)=0$, since there can be no partition of n into 0 cells.
(The union of the cells must be n.)
For Item (3), count the number of partitions of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ into k cells by considering which cell gets x_{n}. There are $S(n-1, k-1)$ partitions in which x_{n} is isolated. (That is, of the form $\cdots / \cdots / \cdots / x_{n}$.) There are $C(k, 1) \cdot S(n-1, k)=k \cdot S(n-1, k)$ partitions in which x_{n} is not isolated.

Binomial-type theorems

Binomial-type theorems

Binomial Theorem.

Binomial-type theorems

Binomial Theorem.

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
$$

Binomial-type theorems

Binomial Theorem.

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
$$

Stirling Binomial-type Theorem.

Binomial-type theorems

Binomial Theorem.

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
$$

Stirling Binomial-type Theorem.

$x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{\underline{k}}$,

Binomial-type theorems

Binomial Theorem.

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
$$

Stirling Binomial-type Theorem.

$x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{\underline{k}}$,
where $x^{\underline{k}}=(x)_{k}=x(x-1) \cdots(x-(k-1))$.

Table of Stirling numbers of the second kind

Table of Stirling numbers of the second kind

$n \backslash k$	0	1	2	3	4	5	6	7	8	\cdots
0	1	0	0	0	0	0	0	0	0	\cdots
1	0	1	0	0	0	0	0	0	0	\cdots
2	0	1	1	0	0	0	0	0	0	\cdots
3	0	1	3	1	0	0	0	0	0	\cdots
4	0	1	7	6	1	0	0	0	0	\cdots
5	0	1	15	25	10	1	0	0	0	\cdots
6	0	1	31	90	65	15	1	0	0	\cdots
7	0	1	63	301	350	140	21	1	0	\cdots
8	0	1	127	966	1701	1050	266	28	1	\cdots
\vdots	\ddots									

Table of Stirling numbers of the second kind

$n \backslash k$	0	1	2	3	4	5	6	7	8	\cdots
0	1	0	0	0	0	0	0	0	0	\cdots
1	0	1	0	0	0	0	0	0	0	\cdots
2	0	1	1	0	0	0	0	0	0	\cdots
3	0	1	3	1	0	0	0	0	0	\cdots
4	0	1	7	6	1	0	0	0	0	\cdots
5	0	1	15	25	10	1	0	0	0	\cdots
6	0	1	31	90	65	15	1	0	0	\cdots
7	0	1	63	301	350	140	21	1	0	\cdots
8	0	1	127	966	1701	1050	266	28	1	\cdots
\vdots	\ddots									

Each row is a unimodal sequence with maximum occurring for one or two consecutive values around $k \approx \frac{n}{\ln (n)}$.

Table of Stirling numbers of the second kind

$n \backslash k$	0	1	2	3	4	5	6	7	8	\cdots
0	1	0	0	0	0	0	0	0	0	\cdots
1	0	1	0	0	0	0	0	0	0	\cdots
2	0	1	1	0	0	0	0	0	0	\cdots
3	0	1	3	1	0	0	0	0	0	\cdots
4	0	1	7	6	1	0	0	0	0	\cdots
5	0	1	15	25	10	1	0	0	0	\cdots
6	0	1	31	90	65	15	1	0	0	\cdots
7	0	1	63	301	350	140	21	1	0	\cdots
8	0	1	127	966	1701	1050	266	28	1	\cdots
\vdots	\ddots									

Each row is a unimodal sequence with maximum occurring for one or two consecutive values around $k \approx \frac{n}{\ln (n)}$.
The n row sum is denoted B_{n} and is called the nth Bell number.

The Bell numbers

The Bell numbers

Definition.

The Bell numbers

Definition. B_{n} is the number of partitions of n.

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example.

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example. $B_{0}=1$, since the only partition of $0=\emptyset$ is \emptyset.

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example. $B_{0}=1$, since the only partition of $0=\emptyset$ is \emptyset. $B_{1}=1$, since the only partition of $1=\{0\}$ is $\{\{0\}\}$.

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example. $B_{0}=1$, since the only partition of $0=\emptyset$ is \emptyset. $B_{1}=1$, since the only partition of $1=\{0\}$ is $\{\{0\}\}$.
$B_{2}=2$, since the only partitions of $2=\{0,1\}$ are $0 / 1,01$.

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example. $B_{0}=1$, since the only partition of $0=\emptyset$ is \emptyset. $B_{1}=1$, since the only partition of $1=\{0\}$ is $\{\{0\}\}$.
$B_{2}=2$, since the only partitions of $2=\{0,1\}$ are $0 / 1,01$.
$B_{3}=5$, since the partitions of $3=\{0,1,2\}$ are

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example. $B_{0}=1$, since the only partition of $0=\emptyset$ is \emptyset. $B_{1}=1$, since the only partition of $1=\{0\}$ is $\{\{0\}\}$.
$B_{2}=2$, since the only partitions of $2=\{0,1\}$ are $0 / 1,01$.
$B_{3}=5$, since the partitions of $3=\{0,1,2\}$ are

$$
0 / 1 / 2, \quad 01 / 2, \quad 02 / 1, \quad 12 / 0, \quad 012
$$

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example. $B_{0}=1$, since the only partition of $0=\emptyset$ is \emptyset. $B_{1}=1$, since the only partition of $1=\{0\}$ is $\{\{0\}\}$.
$B_{2}=2$, since the only partitions of $2=\{0,1\}$ are $0 / 1,01$.
$B_{3}=5$, since the partitions of $3=\{0,1,2\}$ are

$$
0 / 1 / 2, \quad 01 / 2, \quad 02 / 1, \quad 12 / 0, \quad 012
$$

We have seen that $B_{n}=\sum_{k=0}^{n} S(n, k)$.

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example. $B_{0}=1$, since the only partition of $0=\emptyset$ is \emptyset. $B_{1}=1$, since the only partition of $1=\{0\}$ is $\{\{0\}\}$.
$B_{2}=2$, since the only partitions of $2=\{0,1\}$ are $0 / 1,01$.
$B_{3}=5$, since the partitions of $3=\{0,1,2\}$ are

$$
0 / 1 / 2, \quad 01 / 2, \quad 02 / 1, \quad 12 / 0, \quad 012
$$

We have seen that $B_{n}=\sum_{k=0}^{n} S(n, k)$.
Another interesting relation is $B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot B_{k}$.

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example. $B_{0}=1$, since the only partition of $0=\emptyset$ is \emptyset.
$B_{1}=1$, since the only partition of $1=\{0\}$ is $\{\{0\}\}$.
$B_{2}=2$, since the only partitions of $2=\{0,1\}$ are $0 / 1,01$.
$B_{3}=5$, since the partitions of $3=\{0,1,2\}$ are

$$
0 / 1 / 2, \quad 01 / 2, \quad 02 / 1, \quad 12 / 0,012
$$

We have seen that $B_{n}=\sum_{k=0}^{n} S(n, k)$.
Another interesting relation is $B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot B_{k}$.
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\}$.

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example. $B_{0}=1$, since the only partition of $0=\emptyset$ is \emptyset.
$B_{1}=1$, since the only partition of $1=\{0\}$ is $\{\{0\}\}$.
$B_{2}=2$, since the only partitions of $2=\{0,1\}$ are $0 / 1,01$.
$B_{3}=5$, since the partitions of $3=\{0,1,2\}$ are

$$
0 / 1 / 2, \quad 01 / 2, \quad 02 / 1, \quad 12 / 0,012
$$

We have seen that $B_{n}=\sum_{k=0}^{n} S(n, k)$.
Another interesting relation is $B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot B_{k}$.
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\}$. A partition of X is determined by the choice of the cell $\left[x_{n+1}\right]$ (= a subset of X containing $\left.x_{n+1}\right)$ and a partition of $X-\left[x_{n+1}\right]$.

The Bell numbers

Definition. B_{n} is the number of partitions of n.
Example. $B_{0}=1$, since the only partition of $0=\emptyset$ is \emptyset.
$B_{1}=1$, since the only partition of $1=\{0\}$ is $\{\{0\}\}$.
$B_{2}=2$, since the only partitions of $2=\{0,1\}$ are $0 / 1,01$.
$B_{3}=5$, since the partitions of $3=\{0,1,2\}$ are

$$
0 / 1 / 2, \quad 01 / 2, \quad 02 / 1, \quad 12 / 0,012
$$

We have seen that $B_{n}=\sum_{k=0}^{n} S(n, k)$.
Another interesting relation is $B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot B_{k}$.
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\}$. A partition of X is determined by the choice of the cell $\left[x_{n+1}\right]$ (= a subset of X containing $\left.x_{n+1}\right)$ and a partition of $X-\left[x_{n+1}\right] . \square$

Growth rates

Growth rates

Which of the following functions grows faster?

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer.

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order.

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order. That is,

$$
2^{n-1} \leq B_{n} \leq n!\leq n^{n} \leq 2^{n^{2}} .
$$

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order. That is,

$$
2^{n-1} \leq B_{n} \leq n!\leq n^{n} \leq 2^{n^{2}} .
$$

- $2^{n-1} \leq B_{n}$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order. That is,

$$
2^{n-1} \leq B_{n} \leq n!\leq n^{n} \leq 2^{n^{2}} .
$$

- $2^{n-1} \leq B_{n}$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order. That is,

$$
2^{n-1} \leq B_{n} \leq n!\leq n^{n} \leq 2^{n^{2}} .
$$

- $2^{n-1} \leq B_{n}$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_{n} \leq n!$, since we can code a partition as a permutation.

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order. That is,

$$
2^{n-1} \leq B_{n} \leq n!\leq n^{n} \leq 2^{n^{2}} .
$$

- $2^{n-1} \leq B_{n}$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_{n} \leq n!$, since we can code a partition as a permutation.

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order. That is,

$$
2^{n-1} \leq B_{n} \leq n!\leq n^{n} \leq 2^{n^{2}} .
$$

- $2^{n-1} \leq B_{n}$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_{n} \leq n!$, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order. That is,

$$
2^{n-1} \leq B_{n} \leq n!\leq n^{n} \leq 2^{n^{2}} .
$$

- $2^{n-1} \leq B_{n}$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_{n} \leq n!$, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

$$
035 / 14 / 2 \longrightarrow 53 \underline{0} 4 \underline{1} \underline{2}
$$

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order. That is,

$$
2^{n-1} \leq B_{n} \leq n!\leq n^{n} \leq 2^{n^{2}} .
$$

- $2^{n-1} \leq B_{n}$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_{n} \leq n!$, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

$$
035 / 14 / 2 \longrightarrow 53 \underline{0} 4 \underline{1} \underline{2}
$$

- $n!\leq n^{n}$, since the latter counts the number of functions $f: n \rightarrow n$, while the former only counts the bijections.

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order. That is,

$$
2^{n-1} \leq B_{n} \leq n!\leq n^{n} \leq 2^{n^{2}} .
$$

- $2^{n-1} \leq B_{n}$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_{n} \leq n!$, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

$$
035 / 14 / 2 \longrightarrow 53 \underline{0} 4 \underline{1} \underline{2}
$$

- $n!\leq n^{n}$, since the latter counts the number of functions $f: n \rightarrow n$, while the former only counts the bijections.

Growth rates

Which of the following functions grows faster?

$$
2^{n-1}, B_{n}, n!, n^{n}, 2^{n^{2}}
$$

Answer. The functions are already in the appropriate order. That is,

$$
2^{n-1} \leq B_{n} \leq n!\leq n^{n} \leq 2^{n^{2}} .
$$

- $2^{n-1} \leq B_{n}$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_{n} \leq n!$, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

$$
035 / 14 / 2 \longrightarrow 53 \underline{0} 4 \underline{1} \underline{2}
$$

- $n!\leq n^{n}$, since the latter counts the number of functions $f: n \rightarrow n$, while the former only counts the bijections.
- $n^{n} \leq 2^{n^{2}}$, since the latter counts the number of binary relations from n to n, while the former only counts the binary relations that are functions.

