Propositional logic

A **proposition** is a declarative statement. It may be true or false.

A **proposition** is a declarative statement.

It may be true or false.

A propositional variable is a symbol for a proposition.

A proposition is a declarative statement.

It may be true or false.

A **propositional variable** is a symbol for a proposition.

A **proposition** is a declarative statement.

It may be true or false.

A **propositional variable** is a symbol for a proposition.

Examples.

• A = "Alice is a genius".

A **proposition** is a declarative statement.

It may be true or false.

A **propositional variable** is a symbol for a proposition.

Examples.

• A = "Alice is a genius".

It may be true or false.

A **propositional variable** is a symbol for a proposition.

Examples.

• A = "Alice is a genius". The symbol "A" is a propositional variable.

It may be true or false.

A **propositional variable** is a symbol for a proposition.

Examples.

• *A* = "Alice is a genius". The symbol "*A*" is a propositional variable. It denotes the proposition "Alice is genius".

It may be true or false.

A **propositional variable** is a symbol for a proposition.

Examples.

• A = "Alice is a genius". The symbol "A" is a propositional variable. It denotes the proposition "Alice is genius". "A" may assume the truth value T or F.

It may be true or false.

A **propositional variable** is a symbol for a proposition.

- A = "Alice is a genius". The symbol "A" is a propositional variable. It denotes the proposition "Alice is genius". "A" may assume the truth value T or F.
- B = "Bob is a genius".

It may be true or false.

A **propositional variable** is a symbol for a proposition.

- A = "Alice is a genius". The symbol "A" is a propositional variable. It denotes the proposition "Alice is genius". "A" may assume the truth value T or F.
- B = "Bob is a genius".

It may be true or false.

A **propositional variable** is a symbol for a proposition.

- A = "Alice is a genius". The symbol "A" is a propositional variable. It denotes the proposition "Alice is genius". "A" may assume the truth value T or F.
- B = "Bob is a genius".
- R = "It is raining".

It may be true or false.

A **propositional variable** is a symbol for a proposition.

- A = "Alice is a genius". The symbol "A" is a propositional variable. It denotes the proposition "Alice is genius". "A" may assume the truth value T or F.
- B = "Bob is a genius".
- R = "It is raining".

It may be true or false.

A **propositional variable** is a symbol for a proposition.

- A = "Alice is a genius". The symbol "A" is a propositional variable. It denotes the proposition "Alice is genius". "A" may assume the truth value T or F.
- B = "Bob is a genius".
- R = "It is raining".
- W = "The ground is wet".

We can express complex propositions in terms of simpler ones using the **logical connectives**:

We can express complex propositions in terms of simpler ones using the **logical connectives**: and (\land , conjunction),

We can express complex propositions in terms of simpler ones using the **logical connectives**: and (\land , conjunction), or (\lor , disjunction),

We can express complex propositions in terms of simpler ones using the **logical connectives**: and (\land , conjunction), or (\lor , disjunction), not (\neg , negation),

We can express complex propositions in terms of simpler ones using the **logical connectives**: and (\land , conjunction), or (\lor , disjunction), not (\neg , negation), if-then (\rightarrow , implication),

We can express complex propositions in terms of simpler ones using the **logical connectives**: and (\land , conjunction), or (\lor , disjunction), not (\neg , negation), if-then (\rightarrow , implication), if-and-only-if (\leftrightarrow , bi-implication).

We can express complex propositions in terms of simpler ones using the **logical connectives**: and (\land , conjunction), or (\lor , disjunction), not (\neg , negation), if-then (\rightarrow , implication), if-and-only-if (\leftrightarrow , bi-implication).

		R	W	$R \wedge$	W		R	W	$R \lor$	W		
		0	0	0)		0	0	0)		$R \qquad \neg R$
		0	1	0)		0	1	1			0 1
		1	0	0)		1	0	1			1 0
		1	1	1		•	1	1	1			
				_								
	W	$R \to W$		_	R	W	$R \leftrightarrow W$			R	W	$R \oplus W = R \vee W$
0	0	1		-	0	0		1		0	0	0
0	1	1		-	0	1	0			0	1	1
1	0	0			1	0	0			1	0	1
1	1		1	-	1	1		1		1	1	0

Write the truth table for $P := R \lor (((A \land B) \to (\neg R))).$

Write the truth table for $P := R \lor (((A \land B) \to (\neg R))).$

Α	B	R	$A \wedge B$	$\neg R$	$((A \land B) \to (\neg R))$	Р
0	0	0	0	1	1	1
0	0	1	0	0	1	1
0	1	0	0	1	1	1
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	0	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	1

Write the truth table for $P := R \lor (((A \land B) \to (\neg R))).$

Α	В	R	$A \wedge B$	$\neg R$	$((A \land B) \to (\neg R))$	Р
0	0	0	0	1	1	1
0	0	1	0	0	1	1
0	1	0	0	1	1	1
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	0	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	1

This proposition P is a **tautology**, because it assumes the value "true" under any truth assignment to the propositional variables.

Write the truth table for $P := R \lor (((A \land B) \to (\neg R))).$

Α	В	R	$A \wedge B$	$\neg R$	$((A \land B) \to (\neg R))$	Р
0	0	0	0	1	1	1
0	0	1	0	0	1	1
0	1	0	0	1	1	1
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	0	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	1

This proposition P is a **tautology**, because it assumes the value "true" under any truth assignment to the propositional variables. This means that P is true because of its logical structure alone, and not because of the truth values of its variables.

A (compound) proposition is a **tautology** it assumes the value "true" under any truth assignment to the propositional variables.

A (compound) proposition is a **tautology** it assumes the value "true" under any truth assignment to the propositional variables.

A (compound) proposition is a **contradiction** it assumes the value "false" under any truth assignment to the propositional variables.

A (compound) proposition is a **tautology** it assumes the value "true" under any truth assignment to the propositional variables.

A (compound) proposition is a **contradiction** it assumes the value "false" under any truth assignment to the propositional variables.

Two propositions are (**logically**) equivalent if they assume the same truth value under any truth assignment to the propositional variables.

A (compound) proposition is a **tautology** it assumes the value "true" under any truth assignment to the propositional variables.

A (compound) proposition is a **contradiction** it assumes the value "false" under any truth assignment to the propositional variables.

Two propositions are (**logically**) equivalent if they assume the same truth value under any truth assignment to the propositional variables. (Write $P \equiv Q$.)

Facts and examples

Facts and examples

Facts.
Facts.

• The negation of a tautology is a contradiction, and vice versa.

Facts.

• The negation of a tautology is a contradiction, and vice versa.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies:

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \lor (\neg P))$,

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \lor (\neg P)), (P \to P),$

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \lor (\neg P)), (P \to P), ((P \land Q) \to P)$

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \lor (\neg P)), (P \to P), ((P \land Q) \to P)$ Some Equivalences:

• (Direct implication, Contrapositive, Contradiction)

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \lor (\neg P)), (P \to P), ((P \land Q) \to P)$ Some Equivalences:

• (Direct implication, Contrapositive, Contradiction)

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \lor (\neg P)), (P \to P), ((P \land Q) \to P)$ Some Equivalences:

(Direct implication, Contrapositive, Contradiction)
 (H → C) ≡ ((¬C) → (¬H)) ≡ ((H ∧ (¬C)) → ⊥)

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction)
 (H → C) ≡ ((¬C) → (¬H)) ≡ ((H ∧ (¬C)) → ⊥)
- (Double Negation)

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction)
 (H → C) ≡ ((¬C) → (¬H)) ≡ ((H ∧ (¬C)) → ⊥)
- (Double Negation)

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction)
 (H → C) ≡ ((¬C) → (¬H)) ≡ ((H ∧ (¬C)) → ⊥)
- (Double Negation) $(\neg(\neg P)) \equiv P$

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land, \lor)

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land, \lor)

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction)
 (H → C) ≡ ((¬C) → (¬H)) ≡ ((H ∧ (¬C)) → ⊥)
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for ∧, ∨) (P ∧ Q) ≡ (Q ∧ P),

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction)
 (H → C) ≡ ((¬C) → (¬H)) ≡ ((H ∧ (¬C)) → ⊥)
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for ∧, ∨) (P ∧ Q) ≡ (Q ∧ P), (P ∨ Q) ≡ (Q ∨ P),

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land, \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$,

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land, \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land, \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$
- (De Morgan's Laws)

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land, \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$
- (De Morgan's Laws)

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land, \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$
- (De Morgan's Laws) $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$, and

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land, \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$
- (De Morgan's Laws) $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$, and $\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land , \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$
- (De Morgan's Laws) $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$, and $\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$
- (\leftrightarrow is redundant)

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land , \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$
- (De Morgan's Laws) $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$, and $\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$
- (\leftrightarrow is redundant)

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land , \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$
- (De Morgan's Laws) $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$, and $\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$
- (\leftrightarrow is redundant) ($P \leftrightarrow Q$) \equiv ($P \rightarrow Q$) \land ($Q \rightarrow P$)

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land , \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$
- (De Morgan's Laws) $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$, and $\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$
- (\leftrightarrow is redundant) ($P \leftrightarrow Q$) \equiv ($P \rightarrow Q$) \land ($Q \rightarrow P$)
- $(\rightarrow \text{ is redundant})$

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land , \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$
- (De Morgan's Laws) $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$, and $\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$
- (\leftrightarrow is redundant) ($P \leftrightarrow Q$) \equiv ($P \rightarrow Q$) \land ($Q \rightarrow P$)
- $(\rightarrow \text{ is redundant})$

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

- (Direct implication, Contrapositive, Contradiction) $(H \to C) \equiv ((\neg C) \to (\neg H)) \equiv ((H \land (\neg C)) \to \bot)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative & Associative Laws for \land , \lor) $(P \land Q) \equiv (Q \land P)$, $(P \lor Q) \equiv (Q \lor P)$, $((P \land Q) \land R) \equiv (P \land (Q \land R))$, $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$
- (De Morgan's Laws) $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$, and $\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$
- (\leftrightarrow is redundant) ($P \leftrightarrow Q$) \equiv ($P \rightarrow Q$) \land ($Q \rightarrow P$)
- (\rightarrow is redundant) ($P \rightarrow Q$) $\equiv (\neg P) \lor Q$

The Syntax and Semantics of Propositional Logic

The Syntax and Semantics of Propositional Logic

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.
Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.

 $PQ \land) \lor \rightarrow R$ is not a syntactically correct expression.

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.

 $PQ \land) \lor \to R$ is not a syntactically correct expression. $(P \land (Q \land R))$ and $((P \land Q) \land R)$ are syntactically correct, and syntactically different propositions.

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.

 $PQ \land) \lor \to R$ is not a syntactically correct expression. $(P \land (Q \land R))$ and $((P \land Q) \land R)$ are syntactically correct, and syntactically different propositions.

Semantics refers to the process of assigning meaning to an expression.

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.

 $PQ \land) \lor \to R$ is not a syntactically correct expression. $(P \land (Q \land R))$ and $((P \land Q) \land R)$ are syntactically correct, and syntactically different propositions.

Semantics refers to the process of assigning meaning to an expression. In Propositional Logic, this is the process of assigning a truth table to a proposition.

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.

 $PQ \land) \lor \to R$ is not a syntactically correct expression. $(P \land (Q \land R))$ and $((P \land Q) \land R)$ are syntactically correct, and syntactically different propositions.

Semantics refers to the process of assigning meaning to an expression. In Propositional Logic, this is the process of assigning a truth table to a proposition.

 $(P \land (Q \land R))$ and $((P \land Q) \land R)$ are syntactically different (they are different sequences of characters), but are semantically the same (they have the same truth table).

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.

 $PQ \land) \lor \to R$ is not a syntactically correct expression. $(P \land (Q \land R))$ and $((P \land Q) \land R)$ are syntactically correct, and syntactically different propositions.

Semantics refers to the process of assigning meaning to an expression. In Propositional Logic, this is the process of assigning a truth table to a proposition.

 $(P \land (Q \land R))$ and $((P \land Q) \land R)$ are syntactically different (they are different sequences of characters), but are semantically the same (they have the same truth table).

If *X* and *Y* are compound propositions, then X = Y means that they are syntactically equal, while $X \equiv Y$ means that they are semantically equal.

A **monomial** in the variables $\{A, B, C, D\}$ is a \land (= conjunction) of \pm variables:

A **monomial** in the variables $\{A, B, C, D\}$ is a \land (= conjunction) of \pm variables:

 $(\neg A) \land B \land C \land (\neg D).$

A **monomial** in the variables $\{A, B, C, D\}$ is a \land (= conjunction) of \pm variables:

$$(\neg A) \land B \land C \land (\neg D).$$

The truth table of a monomial has exactly one row whose value is T = 1:

The monomial $(\neg A) \land B \land C \land (\neg D)$ assumes value 1 if and only if A = 0, B = 1, C = 1, D = 0.

If *M* is a monomial that has 1 only in row *i*, and *N* is a monomial that has 1 only in row *j*, then $M \vee N$ has 1 only in rows *i* and *j*.

If *M* is a monomial that has 1 only in row *i*, and *N* is a monomial that has 1 only in row *j*, then $M \vee N$ has 1 only in rows *i* and *j*. Using this idea, one can create a proposition with any prescribed truth table of the form " \bigvee monomials",

If *M* is a monomial that has 1 only in row *i*, and *N* is a monomial that has 1 only in row *j*, then $M \vee N$ has 1 only in rows *i* and *j*. Using this idea, one can create a proposition with any prescribed truth table of the form " \bigvee monomials", a disjunction (= \lor) of monomials.

If *M* is a monomial that has 1 only in row *i*, and *N* is a monomial that has 1 only in row *j*, then $M \vee N$ has 1 only in rows *i* and *j*. Using this idea, one can create a proposition with any prescribed truth table of the form " \bigvee monomials", a disjunction (= \lor) of monomials. This form is called Disjunctive Normal Form (DNF).

If *M* is a monomial that has 1 only in row *i*, and *N* is a monomial that has 1 only in row *j*, then $M \vee N$ has 1 only in rows *i* and *j*. Using this idea, one can create a proposition with any prescribed truth table of the form " \bigvee monomials", a disjunction (= \lor) of monomials. This form is called Disjunctive Normal Form (DNF).

Small example.

If *M* is a monomial that has 1 only in row *i*, and *N* is a monomial that has 1 only in row *j*, then $M \vee N$ has 1 only in rows *i* and *j*. Using this idea, one can create a proposition with any prescribed truth table of the form " \bigvee monomials", a disjunction (= \lor) of monomials. This form is called Disjunctive Normal Form (DNF).

Small example. Create a proposition with truth table

Α	В	C	?
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

If *M* is a monomial that has 1 only in row *i*, and *N* is a monomial that has 1 only in row *j*, then $M \vee N$ has 1 only in rows *i* and *j*. Using this idea, one can create a proposition with any prescribed truth table of the form " \bigvee monomials", a disjunction (= \lor) of monomials. This form is called Disjunctive Normal Form (DNF).

Small example. Create a proposition with truth table

Α	В	C	?
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$((\neg A) \land B \land (\neg C)) \lor (A \land (\neg B) \land C) \lor (A \land B \land C)$$

Using the procedure just described, it is easy to see why the following is true: **Theorem.** Every propositional formula is logically equivalent to a formula in DNF

Using the procedure just described, it is easy to see why the following is true: **Theorem.** Every propositional formula is logically equivalent to a formula in $DNF = \bigvee (\land \pm \text{ variables}).$

Using the procedure just described, it is easy to see why the following is true:

Theorem. Every propositional formula is logically equivalent to a formula in $DNF = \bigvee (\land \pm \text{ variables}).$

Corollary. The set $\{\land, \lor, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\land, \lor, \neg\}$ & propositional variables.

Using the procedure just described, it is easy to see why the following is true:

Theorem. Every propositional formula is logically equivalent to a formula in $DNF = \bigvee (\land \pm \text{ variables}).$

Corollary. The set $\{\land, \lor, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\land, \lor, \neg\}$ & propositional variables.

In fact, $\{\wedge, \neg\}$ is already complete.

Using the procedure just described, it is easy to see why the following is true:

Theorem. Every propositional formula is logically equivalent to a formula in $DNF = \bigvee (\land \pm \text{ variables}).$

Corollary. The set $\{\land, \lor, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\land, \lor, \neg\}$ & propositional variables.

In fact, $\{\land, \neg\}$ is already complete. The redundancy of \lor is a consequence of De Morgan's Law and the Double Complement Law: $P \lor Q \equiv \neg(\neg(P \lor Q)) \equiv \neg((\neg P) \land (\neg Q)).$

Theorem. Every propositional formula is logically equivalent to a formula in $DNF = \bigvee (\land \pm \text{ variables}).$

Corollary. The set $\{\land, \lor, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\land, \lor, \neg\}$ & propositional variables.

In fact, $\{\wedge, \neg\}$ is already complete. The redundancy of \lor is a consequence of De Morgan's Law and the Double Complement Law: $P \lor Q \equiv \neg(\neg(P \lor Q)) \equiv \neg((\neg P) \land (\neg Q)).$

In fact, it is possible to generate every truth table using only the single "Sheffer stroke", or "NAND" operation: $P|Q = \neg (P \land Q)$.

Theorem. Every propositional formula is logically equivalent to a formula in $DNF = \bigvee (\land \pm \text{ variables}).$

Corollary. The set $\{\land, \lor, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\land, \lor, \neg\}$ & propositional variables.

In fact, $\{\wedge, \neg\}$ is already complete. The redundancy of \lor is a consequence of De Morgan's Law and the Double Complement Law: $P \lor Q \equiv \neg(\neg(P \lor Q)) \equiv \neg((\neg P) \land (\neg Q)).$

In fact, it is possible to generate every truth table using only the single "Sheffer stroke", or "NAND" operation: $P|Q = \neg (P \land Q)$. Reason:

Theorem. Every propositional formula is logically equivalent to a formula in $DNF = \bigvee (\land \pm \text{ variables}).$

Corollary. The set $\{\land, \lor, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\land, \lor, \neg\}$ & propositional variables.

In fact, $\{\wedge, \neg\}$ is already complete. The redundancy of \lor is a consequence of De Morgan's Law and the Double Complement Law: $P \lor Q \equiv \neg(\neg(P \lor Q)) \equiv \neg((\neg P) \land (\neg Q)).$

In fact, it is possible to generate every truth table using only the single "Sheffer stroke", or "NAND" operation: $P|Q = \neg (P \land Q)$. Reason: $\neg P \equiv P|P$ and $P \land Q \equiv (P|Q)|(P|Q)$.

When a proposition is written in DNF, every variable should appear in every monomial.

When a proposition is written in DNF, every variable should appear in every monomial. If the set of propositional variables to be considered is $\{A\}$, then the DNF for proposition *A* is just A = A.

When a proposition is written in DNF, every variable should appear in every monomial. If the set of propositional variables to be considered is $\{A\}$, then the DNF for proposition *A* is just A = A. But if the set of propositional variables to be considered is $\{A, B\}$, then the DNF for *A* is $(A \land (\neg B)) \lor (A \land B)$, since

When a proposition is written in DNF, every variable should appear in every monomial. If the set of propositional variables to be considered is $\{A\}$, then the DNF for proposition *A* is just A = A. But if the set of propositional variables to be considered is $\{A, B\}$, then the DNF for *A* is $(A \land (\neg B)) \lor (A \land B)$, since

Α	B	Α
0	0	0
0	1	0
1	0	1
1	1	1

When a proposition is written in DNF, every variable should appear in every monomial. If the set of propositional variables to be considered is $\{A\}$, then the DNF for proposition *A* is just A = A. But if the set of propositional variables to be considered is $\{A, B\}$, then the DNF for *A* is $(A \land (\neg B)) \lor (A \land B)$, since

Α	B	A
0	0	0
0	1	0
1	0	1
1	1	1

If the set of propositional variables to be considered is $\{A, B, C\}$, then the DNF for *A* is

 $(A \land (\neg B) \land (\neg C)) \lor (A \land (\neg B) \land C) \lor (A \land B \land (\neg C)) \lor (A \land B \land C)$