Propositional logic

Propositions

Propositions

A proposition is a declarative statement.

Propositions

A proposition is a declarative statement. It may be true or false.

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.
Examples.

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

- $A=$ "Alice is a genius".

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

- $A=$ "Alice is a genius".

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

- $A=$ "Alice is a genius". The symbol " A " is a propositional variable.

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

- $A=$ "Alice is a genius". The symbol " A " is a propositional variable. It denotes the proposition "Alice is genius".

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

- $A=$ "Alice is a genius". The symbol " A " is a propositional variable. It denotes the proposition "Alice is genius". " A " may assume the truth value T or F.

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

- $A=$ "Alice is a genius". The symbol " A " is a propositional variable. It denotes the proposition "Alice is genius". " A " may assume the truth value T or F.
- $B=$ "Bob is a genius".

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

- $A=$ "Alice is a genius". The symbol " A " is a propositional variable. It denotes the proposition "Alice is genius". " A " may assume the truth value T or F.
- $B=$ "Bob is a genius".

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

- $A=$ "Alice is a genius". The symbol " A " is a propositional variable. It denotes the proposition "Alice is genius". " A " may assume the truth value T or F.
- $B=$ "Bob is a genius".
- $R=$ "It is raining".

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

- $A=$ "Alice is a genius". The symbol " A " is a propositional variable. It denotes the proposition "Alice is genius". " A " may assume the truth value T or F.
- $B=$ "Bob is a genius".
- $R=$ "It is raining".

Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

- $A=$ "Alice is a genius". The symbol " A " is a propositional variable. It denotes the proposition "Alice is genius". " A " may assume the truth value T or F.
- $B=$ "Bob is a genius".
- $R=$ "It is raining".
- $W=$ "The ground is wet".

Compound propositions

Compound propositions

We can express complex propositions in terms of simpler ones using the logical connectives:

Compound propositions

We can express complex propositions in terms of simpler ones using the logical connectives: and (\wedge, conjunction),

Compound propositions

We can express complex propositions in terms of simpler ones using the logical connectives: and (\wedge, conjunction), or $(\vee$, disjunction),

Compound propositions

We can express complex propositions in terms of simpler ones using the logical connectives: and (\wedge, conjunction), or (\vee, disjunction), not (\neg, negation),

Compound propositions

We can express complex propositions in terms of simpler ones using the logical connectives: and (\wedge, conjunction), or (\vee, disjunction), not $(\neg$, negation), if-then (\rightarrow, implication),

Compound propositions

We can express complex propositions in terms of simpler ones using the logical connectives: and (\wedge, conjunction), or (\vee, disjunction), not (\neg, negation), if-then (\rightarrow, implication), if-and-only-if (\leftrightarrow, bi-implication).

Compound propositions

We can express complex propositions in terms of simpler ones using the logical connectives: and (\wedge, conjunction), or (\vee, disjunction), not (\neg, negation), if-then (\rightarrow, implication), if-and-only-if (\leftrightarrow, bi-implication).

R	W	$R \wedge W$
0	0	0
0	1	0
1	0	0
1	1	1

R	W	$R \vee W$
0	0	0
0	1	1
1	0	1
1	1	1

R	$\neg R$
0	1
1	0

R	W	$R \rightarrow W$
0	0	1
0	1	1
1	0	0
1	1	1

R	W	$R \leftrightarrow W$
0	0	1
0	1	0
1	0	0
1	1	1

R	W	$R \oplus W=R \underline{\bigvee} W$
0	0	0
0	1	1
1	0	1
1	1	0

Example: a truth table for a compound proposition

Example: a truth table for a compound proposition

Write the truth table for $P:=R \vee(((A \wedge B) \rightarrow(\neg R)))$.

Example: a truth table for a compound proposition

Write the truth table for $P:=R \vee(((A \wedge B) \rightarrow(\neg R)))$.

A	B	R	$A \wedge B$	$\neg R$	$((A \wedge B) \rightarrow(\neg R))$	P
0	0	0	0	1	1	1
0	0	1	0	0	1	1
0	1	0	0	1	1	1
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	0	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	1

Example: a truth table for a compound proposition

Write the truth table for $P:=R \vee(((A \wedge B) \rightarrow(\neg R)))$.

A	B	R	$A \wedge B$	$\neg R$	$((A \wedge B) \rightarrow(\neg R))$	P
0	0	0	0	1	1	1
0	0	1	0	0	1	1
0	1	0	0	1	1	1
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	0	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	1

This proposition P is a tautology, because it assumes the value "true" under any truth assignment to the propositional variables.

Example: a truth table for a compound proposition

Write the truth table for $P:=R \vee(((A \wedge B) \rightarrow(\neg R)))$.

A	B	R	$A \wedge B$	$\neg R$	$((A \wedge B) \rightarrow(\neg R))$	P
0	0	0	0	1	1	1
0	0	1	0	0	1	1
0	1	0	0	1	1	1
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	0	1	1
1	1	0	1	1	1	1
1	1	1	1	0	0	1

This proposition P is a tautology, because it assumes the value "true" under any truth assignment to the propositional variables. This means that P is true because of its logical structure alone, and not because of the truth values of its variables.

Tautologies, contradictions, logical equivalence

Tautologies, contradictions, logical equivalence

A (compound) proposition is a tautology it assumes the value "true" under any truth assignment to the propositional variables.

Tautologies, contradictions, logical equivalence

A (compound) proposition is a tautology it assumes the value "true" under any truth assignment to the propositional variables.

A (compound) proposition is a contradiction it assumes the value "false" under any truth assignment to the propositional variables.

Tautologies, contradictions, logical equivalence

A (compound) proposition is a tautology it assumes the value "true" under any truth assignment to the propositional variables.

A (compound) proposition is a contradiction it assumes the value "false" under any truth assignment to the propositional variables.

Two propositions are (logically) equivalent if they assume the same truth value under any truth assignment to the propositional variables.

Tautologies, contradictions, logical equivalence

A (compound) proposition is a tautology it assumes the value "true" under any truth assignment to the propositional variables.

A (compound) proposition is a contradiction it assumes the value "false" under any truth assignment to the propositional variables.

Two propositions are (logically) equivalent if they assume the same truth value under any truth assignment to the propositional variables.
(Write $P \equiv Q$.)

Facts and examples

Facts and examples

Facts.

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies:

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P))$,

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P)$,

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.
Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.
Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.
Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation)

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation)

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative $\&$ Associative Laws for \wedge, \vee)

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative $\&$ Associative Laws for \wedge, \vee)

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$,

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P)$,

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$,

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction) $(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$
- (De Morgan's Laws)

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction) $(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$
- (De Morgan's Laws)

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction) $(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$
- (De Morgan's Laws) $\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q)$, and

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction) $(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)$
- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$
- (De Morgan's Laws) $\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q)$, and $\neg(P \vee Q) \equiv(\neg P) \wedge(\neg Q)$

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$
- (De Morgan's Laws) $\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q)$, and $\neg(P \vee Q) \equiv(\neg P) \wedge(\neg Q)$
- (\leftrightarrow is redundant)

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$
- (De Morgan's Laws) $\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q)$, and $\neg(P \vee Q) \equiv(\neg P) \wedge(\neg Q)$
- (\leftrightarrow is redundant)

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$
- (De Morgan's Laws) $\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q)$, and $\neg(P \vee Q) \equiv(\neg P) \wedge(\neg Q)$
- $(\leftrightarrow$ is redundant $)(P \leftrightarrow Q) \equiv(P \rightarrow Q) \wedge(Q \rightarrow P)$

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$
- (De Morgan's Laws) $\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q)$, and $\neg(P \vee Q) \equiv(\neg P) \wedge(\neg Q)$
- $(\leftrightarrow$ is redundant $)(P \leftrightarrow Q) \equiv(P \rightarrow Q) \wedge(Q \rightarrow P)$
- $(\rightarrow$ is redundant $)$

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$
- (De Morgan's Laws) $\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q)$, and $\neg(P \vee Q) \equiv(\neg P) \wedge(\neg Q)$
- $(\leftrightarrow$ is redundant $)(P \leftrightarrow Q) \equiv(P \rightarrow Q) \wedge(Q \rightarrow P)$
- $(\rightarrow$ is redundant $)$

Facts and examples

Facts.

- The negation of a tautology is a contradiction, and vice versa.
- $P \equiv Q$ holds if and only if $P \leftrightarrow Q$ is a tautology.
- Logical equivalence is an equivalence relation on the set of all propositions in a given set of variables.

Examples.

Some Tautologies: $(P \vee(\neg P)),(P \rightarrow P),((P \wedge Q) \rightarrow P)$
Some Equivalences:

- (Direct implication, Contrapositive, Contradiction)

$$
(H \rightarrow C) \equiv((\neg C) \rightarrow(\neg H)) \equiv((H \wedge(\neg C)) \rightarrow \perp)
$$

- (Double Negation) $(\neg(\neg P)) \equiv P$
- (Commutative \& Associative Laws for $\wedge, \vee)(P \wedge Q) \equiv(Q \wedge P)$, $(P \vee Q) \equiv(Q \vee P),((P \wedge Q) \wedge R) \equiv(P \wedge(Q \wedge R))$, $((P \vee Q) \vee R) \equiv(P \vee(Q \vee R))$
- (De Morgan's Laws) $\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q)$, and $\neg(P \vee Q) \equiv(\neg P) \wedge(\neg Q)$
- $(\leftrightarrow$ is redundant $)(P \leftrightarrow Q) \equiv(P \rightarrow Q) \wedge(Q \rightarrow P)$
- $(\rightarrow$ is redundant $)(P \rightarrow Q) \equiv(\neg P) \vee Q$

The Syntax and Semantics of Propositional Logic

The Syntax and Semantics of Propositional Logic

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.

The Syntax and Semantics of Propositional Logic

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.
$P Q \wedge) \vee \rightarrow R$ is not a syntactically correct expression.

The Syntax and Semantics of Propositional Logic

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.
$P Q \wedge) \vee \rightarrow R$ is not a syntactically correct expression. $(P \wedge(Q \wedge R))$ and $((P \wedge Q) \wedge R)$ are syntactically correct, and syntactically different propositions.

The Syntax and Semantics of Propositional Logic

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.
$P Q \wedge) \vee \rightarrow R$ is not a syntactically correct expression. $(P \wedge(Q \wedge R))$ and $((P \wedge Q) \wedge R)$ are syntactically correct, and syntactically different propositions.

Semantics refers to the process of assigning meaning to an expression.

The Syntax and Semantics of Propositional Logic

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.
$P Q \wedge) \vee \rightarrow R$ is not a syntactically correct expression. $(P \wedge(Q \wedge R))$ and $((P \wedge Q) \wedge R)$ are syntactically correct, and syntactically different propositions.

Semantics refers to the process of assigning meaning to an expression. In Propositional Logic, this is the process of assigning a truth table to a proposition.

The Syntax and Semantics of Propositional Logic

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.
$P Q \wedge) \vee \rightarrow R$ is not a syntactically correct expression. $(P \wedge(Q \wedge R))$ and $((P \wedge Q) \wedge R)$ are syntactically correct, and syntactically different propositions.

Semantics refers to the process of assigning meaning to an expression. In Propositional Logic, this is the process of assigning a truth table to a proposition.
$(P \wedge(Q \wedge R))$ and $((P \wedge Q) \wedge R)$ are syntactically different (they are different sequences of characters), but are semantically the same (they have the same truth table).

The Syntax and Semantics of Propositional Logic

Syntax refers to the study of rules that must be followed to form "grammatically correct" expressions.
$P Q \wedge) \vee \rightarrow R$ is not a syntactically correct expression. $(P \wedge(Q \wedge R))$ and $((P \wedge Q) \wedge R)$ are syntactically correct, and syntactically different propositions.

Semantics refers to the process of assigning meaning to an expression. In Propositional Logic, this is the process of assigning a truth table to a proposition.
$(P \wedge(Q \wedge R))$ and $((P \wedge Q) \wedge R)$ are syntactically different (they are different sequences of characters), but are semantically the same (they have the same truth table).

If X and Y are compound propositions, then $X=Y$ means that they are syntactically equal, while $X \equiv Y$ means that they are semantically equal.

Disjunctive normal form, I

Disjunctive normal form, I

A monomial in the variables $\{A, B, C, D\}$ is a \wedge ($=$ conjunction) of \pm variables:

Disjunctive normal form, I

A monomial in the variables $\{A, B, C, D\}$ is a \wedge ($=$ conjunction) of \pm variables:

$$
(\neg A) \wedge B \wedge C \wedge(\neg D)
$$

Disjunctive normal form, I

A monomial in the variables $\{A, B, C, D\}$ is a $\wedge(=$ conjunction $)$ of \pm variables:

$$
(\neg A) \wedge B \wedge C \wedge(\neg D) .
$$

The truth table of a monomial has exactly one row whose value is $T=1$:

A	B	C	D	$(\neg A) \wedge B \wedge C \wedge(\neg D)$
0	0	0	0	0
				\vdots
0	1	1	0	1
				\vdots
1	1	1	1	0

The monomial $(\neg A) \wedge B \wedge C \wedge(\neg D)$ assumes value 1 if and only if $A=0, B=1, C=1, D=0$.

Disjunctive normal form, II

Disjunctive normal form, II

If M is a monomial that has 1 only in row i, and N is a monomial that has 1 only in row j, then $M \vee N$ has 1 only in rows i and j.

Disjunctive normal form, II

If M is a monomial that has 1 only in row i, and N is a monomial that has 1 only in row j, then $M \vee N$ has 1 only in rows i and j. Using this idea, one can create a proposition with any prescribed truth table of the form
" \bigvee monomials",

Disjunctive normal form, II

If M is a monomial that has 1 only in row i, and N is a monomial that has 1 only in row j, then $M \vee N$ has 1 only in rows i and j. Using this idea, one can create a proposition with any prescribed truth table of the form " \bigvee monomials", a disjunction $(=\vee$) of monomials.

Disjunctive normal form, II

If M is a monomial that has 1 only in row i, and N is a monomial that has 1 only in row j, then $M \vee N$ has 1 only in rows i and j. Using this idea, one can create a proposition with any prescribed truth table of the form
" \bigvee monomials", a disjunction $(=\vee)$ of monomials. This form is called Disjunctive Normal Form (DNF).

Disjunctive normal form, II

If M is a monomial that has 1 only in row i, and N is a monomial that has 1 only in row j, then $M \vee N$ has 1 only in rows i and j. Using this idea, one can create a proposition with any prescribed truth table of the form
" \bigvee monomials", a disjunction $(=\vee$) of monomials. This form is called Disjunctive Normal Form (DNF).

Small example.

Disjunctive normal form, II

If M is a monomial that has 1 only in row i, and N is a monomial that has 1 only in row j, then $M \vee N$ has 1 only in rows i and j. Using this idea, one can create a proposition with any prescribed truth table of the form
" \bigvee monomials", a disjunction $(=\vee$) of monomials. This form is called Disjunctive Normal Form (DNF).

Small example. Create a proposition with truth table

A	B	C	$?$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Disjunctive normal form, II

If M is a monomial that has 1 only in row i, and N is a monomial that has 1 only in row j, then $M \vee N$ has 1 only in rows i and j. Using this idea, one can create a proposition with any prescribed truth table of the form
" \bigvee monomials", a disjunction $(=\vee$) of monomials. This form is called Disjunctive Normal Form (DNF).

Small example. Create a proposition with truth table

A	B	C	$?$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$
((\neg A) \wedge B \wedge(\neg C)) \vee(A \wedge(\neg B) \wedge C) \vee(A \wedge B \wedge C)
$$

Disjunctive normal form, III

Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:

Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:
Theorem. Every propositional formula is logically equivalent to a formula in DNF

Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:
Theorem. Every propositional formula is logically equivalent to a formula in $\mathrm{DNF}=\bigvee(\wedge \pm$ variables $)$.

Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:
Theorem. Every propositional formula is logically equivalent to a formula in DNF $=\bigvee(\wedge \pm$ variables $)$.

Corollary. The set $\{\wedge, \vee, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\wedge, \vee, \neg\} \&$ propositional variables.

Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:
Theorem. Every propositional formula is logically equivalent to a formula in DNF $=\bigvee(\wedge \pm$ variables $)$.

Corollary. The set $\{\wedge, \vee, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\wedge, \vee, \neg\} \&$ propositional variables.

In fact, $\{\wedge, \neg\}$ is already complete.

Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:
Theorem. Every propositional formula is logically equivalent to a formula in DNF $=\bigvee(\wedge \pm$ variables $)$.

Corollary. The set $\{\wedge, \vee, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\wedge, \vee, \neg\} \&$ propositional variables.

In fact, $\{\wedge, \neg\}$ is already complete. The redundancy of \vee is a consequence of De Morgan's Law and the Double Complement Law:
$P \vee Q \equiv \neg(\neg(P \vee Q)) \equiv \neg((\neg P) \wedge(\neg Q))$.

Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:
Theorem. Every propositional formula is logically equivalent to a formula in DNF $=\bigvee(\wedge \pm$ variables $)$.

Corollary. The set $\{\wedge, \vee, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\wedge, \vee, \neg\} \&$ propositional variables.

In fact, $\{\wedge, \neg\}$ is already complete. The redundancy of \vee is a consequence of De Morgan's Law and the Double Complement Law:
$P \vee Q \equiv \neg(\neg(P \vee Q)) \equiv \neg((\neg P) \wedge(\neg Q))$.
In fact, it is possible to generate every truth table using only the single "Sheffer stroke", or "NAND" operation: $P \mid Q=\neg(P \wedge Q)$.

Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:
Theorem. Every propositional formula is logically equivalent to a formula in DNF $=\bigvee(\wedge \pm$ variables $)$.

Corollary. The set $\{\wedge, \vee, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\wedge, \vee, \neg\} \&$ propositional variables.

In fact, $\{\wedge, \neg\}$ is already complete. The redundancy of \vee is a consequence of De Morgan's Law and the Double Complement Law:
$P \vee Q \equiv \neg(\neg(P \vee Q)) \equiv \neg((\neg P) \wedge(\neg Q))$.
In fact, it is possible to generate every truth table using only the single "Sheffer stroke", or "NAND" operation: $P \mid Q=\neg(P \wedge Q)$. Reason:

Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:
Theorem. Every propositional formula is logically equivalent to a formula in DNF $=\bigvee(\wedge \pm$ variables $)$.

Corollary. The set $\{\wedge, \vee, \neg\}$ is a "complete" set of logical connectives, in the sense that any propositional formula is logically equivalent to one expressed with $\{\wedge, \vee, \neg\} \&$ propositional variables.

In fact, $\{\wedge, \neg\}$ is already complete. The redundancy of \vee is a consequence of De Morgan's Law and the Double Complement Law:
$P \vee Q \equiv \neg(\neg(P \vee Q)) \equiv \neg((\neg P) \wedge(\neg Q))$.
In fact, it is possible to generate every truth table using only the single "Sheffer stroke", or "NAND" operation: $P \mid Q=\neg(P \wedge Q)$. Reason: $\neg P \equiv P \mid P$ and $P \wedge Q \equiv(P \mid Q) \mid(P \mid Q)$.

DNF depends on the choice of variables

DNF depends on the choice of variables

When a proposition is written in DNF, every variable should appear in every monomial.

DNF depends on the choice of variables

When a proposition is written in DNF, every variable should appear in every monomial. If the set of propositional variables to be considered is $\{A\}$, then the DNF for proposition A is just $A=A$.

DNF depends on the choice of variables

When a proposition is written in DNF, every variable should appear in every monomial. If the set of propositional variables to be considered is $\{A\}$, then the DNF for proposition A is just $A=A$. But if the set of propositional variables to be considered is $\{A, B\}$, then the DNF for A is $(A \wedge(\neg B)) \vee(A \wedge B)$, since

DNF depends on the choice of variables

When a proposition is written in DNF, every variable should appear in every monomial. If the set of propositional variables to be considered is $\{A\}$, then the DNF for proposition A is just $A=A$. But if the set of propositional variables to be considered is $\{A, B\}$, then the DNF for A is $(A \wedge(\neg B)) \vee(A \wedge B)$, since

A	B	A
0	0	0
0	1	0
1	0	1
1	1	1

DNF depends on the choice of variables

When a proposition is written in DNF, every variable should appear in every monomial. If the set of propositional variables to be considered is $\{A\}$, then the DNF for proposition A is just $A=A$. But if the set of propositional variables to be considered is $\{A, B\}$, then the DNF for A is $(A \wedge(\neg B)) \vee(A \wedge B)$, since

A	B	A
0	0	0
0	1	0
1	0	1
1	1	1

If the set of propositional variables to be considered is $\{A, B, C\}$, then the DNF for A is

$$
(A \wedge(\neg B) \wedge(\neg C)) \vee(A \wedge(\neg B) \wedge C) \vee(A \wedge B \wedge(\neg C)) \vee(A \wedge B \wedge C)
$$

