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Propositions

A proposition is a declarative statement.
It may be true or false.
A propositional variable is a symbol for a proposition.

Examples.

A = “Alice is a genius”. The symbol “A” is a propositional variable. It
denotes the proposition “Alice is genius”. “A” may assume the truth
value T or F.

B = “Bob is a genius”.

R = “It is raining”.

W = “The ground is wet”.
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Compound propositions

We can express complex propositions in terms of simpler ones using the
logical connectives: and (∧, conjunction), or (∨, disjunction), not
(¬, negation), if-then (→, implication), if-and-only-if (↔, bi-implication).

R W R ∧W

0 0 0
0 1 0
1 0 0
1 1 1

R W R ∨W

0 0 0
0 1 1
1 0 1
1 1 1

R ¬R

0 1
1 0

R W R→ W

0 0 1
0 1 1
1 0 0
1 1 1

R W R↔ W

0 0 1
0 1 0
1 0 0
1 1 1

R W R⊕W = R Y W

0 0 0
0 1 1
1 0 1
1 1 0
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Example: a truth table for a compound proposition

Write the truth table for P := R ∨ (((A ∧ B)→ (¬R))).

A B R A ∧ B ¬R ((A ∧ B)→ (¬R)) P

0 0 0 0 1 1 1
0 0 1 0 0 1 1
0 1 0 0 1 1 1
0 1 1 0 0 1 1
1 0 0 0 1 1 1
1 0 1 0 0 1 1
1 1 0 1 1 1 1
1 1 1 1 0 0 1

This proposition P is a tautology, because it assumes the value “true” under
any truth assignment to the propositional variables. This means that P is true
because of its logical structure alone, and not because of the truth values of its
variables.
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Tautologies, contradictions, logical equivalence

A (compound) proposition is a tautology it assumes the value “true” under
any truth assignment to the propositional variables.

A (compound) proposition is a contradiction it assumes the value “false”
under any truth assignment to the propositional variables.

Two propositions are (logically) equivalent if they assume the same truth
value under any truth assignment to the propositional variables.
(Write P ≡ Q.)
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Facts and examples

Facts.

The negation of a tautology is a contradiction, and vice versa.
P ≡ Q holds if and only if P↔ Q is a tautology.
Logical equivalence is an equivalence relation on the set of all propositions in a
given set of variables.

Examples.
Some Tautologies: (P ∨ (¬P)), (P→ P), ((P ∧ Q)→ P)
Some Equivalences:

(Direct implication, Contrapositive, Contradiction)
(H → C) ≡ ((¬C)→ (¬H)) ≡ ((H ∧ (¬C))→ ⊥)
(Double Negation) (¬(¬P)) ≡ P
(Commutative & Associative Laws for ∧,∨) (P ∧ Q) ≡ (Q ∧ P),
(P ∨ Q) ≡ (Q ∨ P), ((P ∧ Q) ∧ R) ≡ (P ∧ (Q ∧ R)),
((P ∨ Q) ∨ R) ≡ (P ∨ (Q ∨ R))
(De Morgan’s Laws) ¬(P ∧Q) ≡ (¬P) ∨ (¬Q), and ¬(P ∨Q) ≡ (¬P) ∧ (¬Q)

(↔ is redundant) (P↔ Q) ≡ (P→ Q) ∧ (Q→ P)
(→ is redundant) (P→ Q) ≡ (¬P) ∨ Q
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The Syntax and Semantics of Propositional Logic

Syntax refers to the study of rules that must be followed to form
“grammatically correct” expressions.

PQ∧)∨ → R is not a syntactically correct expression. (P ∧ (Q ∧ R)) and
((P ∧ Q) ∧ R) are syntactically correct, and syntactically different
propositions.

Semantics refers to the process of assigning meaning to an expression. In
Propositional Logic, this is the process of assigning a truth table to a
proposition.

(P ∧ (Q ∧ R)) and ((P ∧ Q) ∧ R) are syntactically different (they are different
sequences of characters), but are semantically the same (they have the same
truth table).

If X and Y are compound propositions, then X = Y means that they are
syntactically equal, while X ≡ Y means that they are semantically equal.
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Disjunctive normal form, I

A monomial in the variables {A,B,C,D} is a ∧ ( = conjunction) of ±
variables:

(¬A) ∧ B ∧ C ∧ (¬D).

The truth table of a monomial has exactly one row whose value is T = 1:

A B C D (¬A) ∧ B ∧ C ∧ (¬D)

0 0 0 0 0
...

0 1 1 0 1
...

1 1 1 1 0

The monomial (¬A) ∧ B ∧ C ∧ (¬D) assumes value 1 if and only if
A = 0,B = 1,C = 1,D = 0.
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Disjunctive normal form, II

If M is a monomial that has 1 only in row i, and N is a monomial that has 1
only in row j, then M ∨ N has 1 only in rows i and j. Using this idea, one can
create a proposition with any prescribed truth table of the form
“
∨

monomials”, a disjunction ( = ∨) of monomials. This form is called
Disjunctive Normal Form (DNF).

Small example. Create a proposition with truth table

A B C ?

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

((¬A) ∧ B ∧ (¬C)) ∨ (A ∧ (¬B) ∧ C) ∨ (A ∧ B ∧ C)
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Disjunctive normal form, III

Using the procedure just described, it is easy to see why the following is true:

Theorem. Every propositional formula is logically equivalent to a formula in
DNF =

∨
(∧ ± variables).

Corollary. The set {∧,∨,¬} is a “complete” set of logical connectives, in the
sense that any propositional formula is logically equivalent to one expressed
with {∧,∨,¬} & propositional variables.

In fact, {∧,¬} is already complete. The redundancy of ∨ is a consequence of
De Morgan’s Law and the Double Complement Law:
P ∨ Q ≡ ¬(¬(P ∨ Q)) ≡ ¬((¬P) ∧ (¬Q)).

In fact, it is possible to generate every truth table using only the single
“Sheffer stroke”, or “NAND” operation: P|Q = ¬(P ∧ Q). Reason:
¬P ≡ P|P and P ∧ Q ≡ (P|Q)|(P|Q).
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The redundancy of ∨ is a consequence of
De Morgan’s Law and the Double Complement Law:
P ∨ Q ≡ ¬(¬(P ∨ Q)) ≡ ¬((¬P) ∧ (¬Q)).

In fact, it is possible to generate every truth table using only the single
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DNF depends on the choice of variables

When a proposition is written in DNF, every variable should appear in every
monomial. If the set of propositional variables to be considered is {A}, then
the DNF for proposition A is just A = A. But if the set of propositional
variables to be considered is {A,B}, then the DNF for A is
(A ∧ (¬B)) ∨ (A ∧ B), since

A B A

0 0 0
0 1 0
1 0 1
1 1 1

If the set of propositional variables to be considered is {A,B,C}, then the
DNF for A is

(A ∧ (¬B) ∧ (¬C)) ∨ (A ∧ (¬B) ∧ C) ∨ (A ∧ B ∧ (¬C)) ∨ (A ∧ B ∧ C)
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