Moving the quantifiers to the front! (Prenex Form.)

We have discussed how to decide the truth of a statement with the quantifiers in the front. But what if they are not in the front?

$$((\exists y)(\forall x)(x=y)) \to ((\forall x)(\exists y)(x=y))$$

We have rules to move quantifiers to the front, without altering the meaning.

(1) $\neg(\forall x)P \equiv (\exists x)(\neg P)$. (2) $\neg(\exists x)P \equiv (\forall x)(\neg P)$. (3) $P \lor ((\exists x)Q) \equiv (\exists x)(P \lor Q)$ if P does not depend on x. (4) $P \lor ((\forall x)Q) \equiv (\forall x)(P \lor Q)$ if P does not depend on x. (5) $P \land ((\exists x)Q) \equiv (\exists x)(P \land Q)$ if P does not depend on x. (6) $P \land ((\forall x)Q) \equiv (\forall x)(P \land Q)$ if P does not depend on x. For example,

$$((\exists y)(\forall x)(x=y)) \to ((\forall x)(\exists y)(x=y)) \equiv (\forall s)(\exists t)(\forall x)(\exists y)((s=t) \to (x=y))$$

Practice!

Write the following statements in a logically equivalent form with quantifiers at the front.

(1) If every lumberjack is hungry, then some lumberjack is hungry.

(2)
$$(\exists x)P(x) \leftrightarrow (\exists x)Q(x)$$

$$(3) \ (\forall x)(\forall y)((x < y) \to (\exists z)(x < z < y))$$

² Restricted quantifiers!

Often one sees something like

$$(\forall \varepsilon > 0)(\exists \delta > 0)(|x - a| < \varepsilon \to |f(x) - f(a)| < \delta).$$

Question: What does it mean to write $(\forall \varepsilon > 0)$? More generally, if C(x) is a condition on x and P(x) is a statement about x, what does $((\forall x)C(x))P(x)$ mean?

Answer: $((\forall x)C(x))P(x)$ is an abbreviation for

$$(\forall x)(C(x) \to P(x)),$$

and $((\exists x)C(x))P(x)$ is an abbreviation for

$$(\exists x)(C(x) \land P(x)).$$

We call $((\forall x)C(x))$ and $((\exists x)C(x))$ restricted quantifiers. They behave just like ordinary quantifiers in the sense that

- (1) Rules for logical equivalence are the same:
 - (a) $\neg((\forall x)C(x))P(x) \equiv ((\exists x)C(x))(\neg P(x)).$
 - (b) $P \lor (((\exists x)C(x))Q(x)) \equiv ((\exists x)C(x))(P \lor Q(x))$ if P does not depend on x. (c) ETC
- (2) Quantifier games are played the same way. For example, to determine the truth of

 $(\forall x > 0) (\exists y < 1) (x < y)$

we play a game where \forall first chooses x satisfying the condition x > 0, then \exists chooses y satisfying the condition y < 1.

Practice!

(1) Is $(\forall x > 0)(\exists y < 1)(x < y)$ true in \mathbb{R} ? In \mathbb{N} ? In each case give a strategy for the appropriate quantifier.

(2) Move the restricted quantifiers to the front: $(\exists x > 0) P(x) \leftrightarrow (\exists x > 0) Q(x)$