Moving the quantifiers to the front! (Prenex Form.)

We have discussed how to decide the truth of a statement with the quantifiers in the front. But what if they are not in the front?

$$
((\exists y)(\forall x)(x=y)) \rightarrow((\forall x)(\exists y)(x=y))
$$

We have rules to move quantifiers to the front, without altering the meaning.
(1) $\neg(\forall x) P \equiv(\exists x)(\neg P)$.
(2) $\neg(\exists x) P \equiv(\forall x)(\neg P)$.
(3) $P \vee((\exists x) Q) \equiv(\exists x)(P \vee Q)$ if P does not depend on x.
(4) $P \vee((\forall x) Q) \equiv(\forall x)(P \vee Q)$ if P does not depend on x.
(5) $P \wedge((\exists x) Q) \equiv(\exists x)(P \wedge Q)$ if P does not depend on x.
(6) $P \wedge((\forall x) Q) \equiv(\forall x)(P \wedge Q)$ if P does not depend on x.

For example,

$$
((\exists y)(\forall x)(x=y)) \rightarrow((\forall x)(\exists y)(x=y)) \equiv(\forall s)(\exists t)(\forall x)(\exists y)((s=t) \rightarrow(x=y))
$$

Practice!

Write the following statements in a logically equivalent form with quantifiers at the front.
(1) If every lumberjack is hungry, then some lumberjack is hungry.
(2) $(\exists x) P(x) \leftrightarrow(\exists x) Q(x)$
(3) $(\forall x)(\forall y)((x<y) \rightarrow(\exists z)(x<z<y))$

2

Restricted quantifiers!

Often one sees something like

$$
(\forall \varepsilon>0)(\exists \delta>0)(|x-a|<\varepsilon \rightarrow|f(x)-f(a)|<\delta)
$$

Question: What does it mean to write $(\forall \varepsilon>0)$? More generally, if $C(x)$ is a condition on x and $P(x)$ is a statement about x, what does $((\forall x) C(x)) P(x)$ mean?

Answer: $((\forall x) C(x)) P(x)$ is an abbreviation for

$$
(\forall x)(C(x) \rightarrow P(x))
$$

and $((\exists x) C(x)) P(x)$ is an abbreviation for

$$
(\exists x)(C(x) \wedge P(x))
$$

We call $((\forall x) C(x))$ and $((\exists x) C(x))$ restricted quantifiers. They behave just like ordinary quantifiers in the sense that
(1) Rules for logical equivalence are the same:
(a) $\neg((\forall x) C(x)) P(x) \equiv((\exists x) C(x))(\neg P(x))$.
(b) $P \vee(((\exists x) C(x)) Q(x)) \equiv((\exists x) C(x))(P \vee Q(x))$ if P does not depend on x.
(c) ETC
(2) Quantifier games are played the same way. For example, to determine the truth of

$$
(\forall x>0)(\exists y<1)(x<y)
$$

we play a game where \forall first chooses x satisfying the condition $x>0$, then \exists chooses y satisfying the condition $y<1$.

Practice!

(1) Is $(\forall x>0)(\exists y<1)(x<y)$ true in \mathbb{R} ? In \mathbb{N} ? In each case give a strategy for the appropriate quantifier.
(2) Move the restricted quantifiers to the front: $(\exists x>0) P(x) \leftrightarrow(\exists x>0) Q(x)$

