## Practice with quantifiers!

(1) In this problem you will put " $((\neg((\forall x)(x=0))) \wedge(\neg((\forall x)(x \neq 0))))$ " in prenex form.
(a) Draw a formula tree for the statement.
(b) Standardize the variables apart.
(c) Put in prenex form.
(2) Determine the truth of the statement in the previous problem in $\mathbb{R}$ by giving a winning strategy for the appropriate quantifier.
(3) Let $f: A \rightarrow B$ be a function, and consider the structure $\langle A, B ; f\rangle$. Write down a formal sentence, that is meaningful for this structure, and which expresses " $f$ is a surjective function".
(4) For each of the following instances of the previous problem, give a winning strategy for the appropriate quantifier:
(a) $A=B=\mathbb{R}, f(x)=x^{3}$.
(b) $A=B=\mathbb{R}, f(x)=e^{x}$.
(5) Write " $(\forall x)(\forall y)((x<y) \rightarrow(\exists z)(x<z<y))$ " in prenex form. Is the resulting sentence true in $\mathbb{R}$ ? in $\mathbb{N}$ ?
(6) Write the following in prenex form.
(a) The Axiom of Extensionality.
(b) The Axiom of Pairing.
(c) The Axiom of Union.
(7) Is $(\forall a)(\exists b)(\forall c)(\exists d)\left(a^{2}+b^{2}=c^{2}+d^{2}\right)$ true in $\mathbb{R}$ ? in $\mathbb{C}$ ? For each structure, give a winning strategy for the appropriate quantifier.

