Practice with quantifiers!

- (1) In this problem you will put " $((\neg((\forall x)(x=0))) \land (\neg((\forall x)(x\neq 0))))$ " in prenex form.
 - (a) Draw a formula tree for the statement.

(b) Standardize the variables apart.

(c) Put in prenex form.

(2) Determine the truth of the statement in the previous problem in \mathbb{R} by giving a winning strategy for the appropriate quantifier.

(3) Let $f : A \to B$ be a function, and consider the structure $\langle A, B; f \rangle$. Write down a formal sentence, that is meaningful for this structure, and which expresses "f is a surjective function".

(4) For each of the following instances of the previous problem, give a winning strategy for the appropriate quantifier:

(a)
$$A = B = \mathbb{R}, f(x) = x^3$$
.

(b)
$$A = B = \mathbb{R}, f(x) = e^x$$
.

- (5) Write " $(\forall x)(\forall y)((x < y) \rightarrow (\exists z)(x < z < y))$ " in prenex form. Is the resulting sentence true in \mathbb{R} ? in \mathbb{N} ?
- (6) Write the following in prenex form.
 - (a) The Axiom of Extensionality.
 - (b) The Axiom of Pairing.
 - (c) The Axiom of Union.
- (7) Is $(\forall a)(\exists b)(\forall c)(\exists d)(a^2 + b^2 = c^2 + d^2)$ true in \mathbb{R} ? in \mathbb{C} ? For each structure, give a winning strategy for the appropriate quantifier.