Practice with tables! (Solutions in blue!)

Let $\mathbb{A} = \langle U, V; +, \diamond, \square, \sqsubseteq \rangle$ be a structure where

- (1) $U = \{a, b\}, V = \{p, q\},\$
- $(2) + : U \times V \to U$ is a binary operation from U and V to U,
- $(3) \diamond : U \times U \to V$ is a binary operation from U to V,
- (4) $\square: U \to V$ is a unary operation from U to V,
- (5) $\sqsubseteq: V \times V \to \{\top, \bot\}$ is a binary predicate.

Suppose the tables for these structural elements are

\underline{x}	y	x + y
\overline{a}	p	a
\overline{a}	q	a
\overline{b}	p	b
\overline{b}	\overline{q}	a

x	y	$x \diamond y$
\overline{a}	a	p
a	b	q
b	a	q
b	b	q

\boldsymbol{x}	$\Box x$
\overline{a}	q
b	p

\overline{x}	y	$x \sqsubseteq y$
\overline{p}	p	Т
p	q	上
q	p	上
q	q	T

Create tables for these compound structural elements. If you have time, draw tree representations.

(1) The compound operation $(x \diamond (x + \Box x))$.

x	$\Box x$	$x + \Box x$	$x \diamond (x + \Box x)$
a	q	a	p
b	p	b	q

(2) The compound operation $((x+y) \diamond (x+z))$.

Since x is a left input for +, we must have $x \in \{a, b\}$. Since y and z are right inputs for +, we must have $y, z \in \{p, q\}$.

\overline{x}	y	z	x+y	x+z	$(x+y) \diamond (x+z)$
\overline{a}	p	p	a	a	p
\overline{a}	p	q	a	a	p
a	q	p	a	a	p
a	q	q	a	a	p
b	p	p	b	b	q
b	p	q	b	a	q
b	q	p	a	b	\overline{q}
b	q	q	a	a	p

(3) The compound predicate $\Box x \sqsubseteq (x \diamond x)$. (This could be written in prefix notation as $\sqsubseteq (\Box(x), \diamond(x, x))$.)

x	$\Box x$	$(x \diamond x)$	$\Box x \sqsubseteq (x \diamond x)$
\overline{a}	q	p	
b	p	q	Т