Practice with tables!

Let $\mathbb{A} = \langle U, V; +, \diamond, \Box, \sqsubseteq \rangle$ be a structure where

(1) $U = \{a, b\}, V = \{p, q\},$

(2) $+: U \times V \to U$ is a binary operation from U and V to U,

(3) $\diamond: U \times U \to V$ is a binary operation from U to V,

- (4) $\Box: U \to V$ is a unary operation from U to V,
- (5) $\sqsubseteq: V \times V \to \{\top, \bot\}$ is a binary predicate.

Suppose the tables for these structural elements are

$x \mid y \parallel x + y$	$x \mid y \mid x$	$x \diamond y$	x	y	$x \sqsubseteq y$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a a	p x	$\Box x$ p	p	Т
$a \mid q \mid a$	$a \mid b \mid$	q a	q p	q	\perp
$b \mid p \mid b$	$b \mid a \mid$	q b	p q	p	\perp
$egin{array}{c c} b & q & a \end{array}$	b b	\overline{q}	\overline{q}	q	Т

Create tables for these compound structural elements. If you have time, draw tree representations.

(1) The compound operation $(x \diamond (x + \Box x))$.

(2) The compound operation $((x+y)\diamond(x+z))$.

(3) The compound predicate $\Box x \sqsubseteq (x \diamond x)$. (This could be written in prefix notation as $\sqsubseteq (\Box(x), \diamond(x, x))$.)