Practice with tables!

Let $\mathbb{A}=\langle U, V ;+, \diamond, \square, \sqsubseteq\rangle$ be a structure where
(1) $U=\{a, b\}, V=\{p, q\}$,
(2) $+: U \times V \rightarrow U$ is a binary operation from U and V to U,
(3) $\diamond: U \times U \rightarrow V$ is a binary operation from U to V,
(4) $\square: U \rightarrow V$ is a unary operation from U to V,
(5) $\sqsubseteq: V \times V \rightarrow\{\top, \perp\}$ is a binary predicate.

Suppose the tables for these structural elements are

x	y	$x+y$
a	p	a
a	q	a
b	p	b
b	q	a

x	y	$x \diamond y$
a	a	p
a	b	q
b	a	q
b	b	q

x	$\square x$
a	q
b	p

x	y	$x \sqsubseteq y$
p	p	\top
p	q	\perp
q	p	\perp
q	q	\top

Create tables for these compound structural elements. If you have time, draw tree representations.
(1) The compound operation $(x \diamond(x+\square x))$.
(2) The compound operation $((x+y) \diamond(x+z))$.
(3) The compound predicate $\square x \sqsubseteq(x \diamond x)$.
(This could be written in prefix notation as $\sqsubseteq(\square(x), \diamond(x, x))$.)

