
The Natural Numbers. (Read pages 17-18.)

The symbol 0 denotes ∅. The successor function is S(x) = x∪ {x}. A set I is inductive if

(a) 0 ∈ I, and
(b) x ∈ I implies S(x) ∈ I.

The Axiom of Infinity asserts that there is an inductive set. Since there is at least one, the
Axiom of Separation allows us to intersect all inductive sets. The resulting set is called “the
natural numbers”, and is denoted N or ω. (This is a definition: N is defined to be the
intersection of all inductive sets.)

Theorem 1. N is an inductive set.

Proof. Let I be the (nonempty) class of all inductive sets. N =
⋂
I, that is, N is the set of

elements common to all inductive sets.
Since 0 is common to all inductive sets, we get

(a) 0 ∈ N.

If x ∈ N, then x is common to all inductive sets, so S(x) is also common to all inductive
sets. We get

(b) x ∈ N implies S(x) ∈ N,

which completes the proof that N is inductive. �

Since N is an inductive set that is a subset of every inductive set, it is often called “the
least inductive set”.

Corollary 2. If I is an inductive set and I ⊆ N, then I = N.

Recursion and Induction on N.

Recursion is a technique for defining objects (functions, sets, ETC), while induction is a
technique for proving statements about recursively-defined objects.

1. Recursion on N.

The factorial function, f(n) = n!, is defined by recursion:

f(0) := 1
f(S(k)) := S(k) · f(k).

This kind of definition ensures that the set I = {n ∈ N | f(n) is defined} satisfies

(a) 0 ∈ I, and
(b) k ∈ I implies S(k) ∈ I.
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By Corollary 2, I = N, so f(n) is defined for every natural number n.
For another example of a recursive definition, consider the definition of the n-fold sum,∑n
i=0 xi. The structure of the definition is:∑0

i=0 xi := x0∑S(k)
i=0 xi :=

(∑k
i=0 xi

)
+ xS(k).

A general theorem concerning definition by recursion over N is

Theorem 3. (The Recursion Theorem, version 1) Assume that g : A×N→ A is a function,
and that a0 ∈ A. There is a unique function f : N→ A defined by

f(0) := a0
f(S(k)) := g(f(k), k).

2. Induction on N.

When functions have been defined by recursion, we prove properties of those functions by
a technique called induction. (So ‘recursion’ is the term used for definitions and ‘induction’
is the term used for proofs.)

Theorem 4. (Induction is a valid form of proof, version 1) Assume that s0, s1, . . . is a
sequence of statements indexed by the natural numbers. If

(a) s0 is true, and
(b) sk → sk+1 (that is, the truth of sk implies the truth of sk+1, for every k), then

all sn are true.

Proof. Let I = {n ∈ N | sn is true}. Then (a) and (b) of the theorem imply that I is an
inductive subset of N, so I = N by Corollary 2. �

Later we will prove laws of arithmetic for N, and also prove that S(k) = k + 1. To write
things in a less foreign-looking way, these things will be assumed in the following examples.

Example 1. Define f(n) so that it equals the nth odd natural number. That is,

f(0) := 1
f(k + 1) := f(k) + 2.

The function table for f , for small inputs, is

n 0 1 2 3 · · ·
f(n) 1 3 5 7 · · ·
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After examining the values of f(k) for small k we might make the conjecture that f(k) =
2k + 1 for all k. To prove this by induction, we start by writing down the exact statement
to be proved, indexed by the natural numbers:

sk : f(k) = 2k + 1.

A proof by induction involves two steps:

(a) (The basis of induction) Show s0 is true.
(b) (The inductive step) Show that sk → sk+1.

We write:
(Basis of induction) We must show that s0 is true, that is that f(0) = 2 · 0 + 1 = 1. This

is the initial condition in the definition of f .

(Inductive step) We must show that sk implies sk+1. Assume that, for some k, we have
f(k) = 2k + 1 (i.e., sk is true). We must show that f(k + 1) = 2(k + 1) + 1 (i.e., sk+1 is
true). Using the definition of f we calculate that

f(k + 1) = f(k) + 2
= (2k + 1) + 2
= 2(k + 1) + 1.

This completes the proof.

Example 2. Define f(n) so that it equals the sum of the first n odd natural numbers. That
is,

f(0) := 1
f(k + 1) := f(k) + (2 · (k + 1) + 1).

The function table for f , for small inputs, is

n 0 1 2 3 · · ·
f(n) 1 4 9 16 · · ·

We might make the conjecture that f(k) = (k + 1)2 for all k. To prove this by induction,
we start by writing down the exact statement to be proved:

sk : f(k) = (k + 1)2.

A proof by induction involves two steps:

(a) (The basis of induction) Show s0 is true.
(b) (The inductive step) Show that sk → sk+1.
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We write:
(Basis of induction) We must show that s0 is true, that is that f(0) = 12 = 1. This is the

initial condition in the definition of f .

(Inductive step) We must show that sk implies sk+1. Assume that, for some k, we have
f(k) = (k + 1)2 (i.e., sk is true). We must show that f(k + 1) = ((k + 1) + 1)2 (i.e., sk+1 is
true). Using the definition of f we calculate that

f(k + 1) = f(k) + (2 · (k + 1) + 1)
= (k + 1)2 + (2 · (k + 1) + 1)
= ((k + 1) + 1)2.

This completes the proof.

Test yourself! Use induction to prove these statements.

(i) sn: 1 + 2 + · · ·+ n = n(n+1)
2

(ii) sn: 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6

(iii) sn: 13 + 23 + · · ·+ n3 = [n(n+1)
2

]2

(iv) sn: 1 + r + · · ·+ rn = rn+1−1
r−1

if r 6= 1.


