Logic.

The fact that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function is sometimes written

$$
\forall x_{0} \forall \varepsilon \exists \delta \forall x\left((\varepsilon \leq 0) \vee\left(\left(0<\left|x-x_{0}\right|<\delta\right) \rightarrow\left(\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right)\right)\right)
$$

We will learn how to read and write such sentences, and how to test whether a sentence like this is true.

We will discuss the following four topics.

- Syntax. (What are the accepted ways to combine symbols into sensible expressions?)
- Meaning. (What does it mean for an expression to be true or false?)
- Proof. (How can we determine truth or communicate it to others?)
- The relationship between truth and provability. (Are all provable statements true? Are all true statements provable?)
(I) Syntax.
(1) An alphabet of symbols.
(a) variables: $x_{1}, x_{2}, x_{3}, \ldots$
(b) logical symbols
(i) logical connectives: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$.
(ii) quantifiers: \exists, \forall
(c) nonlogical symbols: operation symbols, predicate symbols (including $=$).
(d) punctuation: parentheses, commas.
(2) Formulas and sentences.
(II) Meaning.
(1) The logical connectives.
(2) The equivalence of $(H \rightarrow C),((\neg C) \rightarrow(\neg H))$ and $((H \wedge \neg C) \rightarrow$ False $)$.
(3) Structures.
(4) Valuations.
(5) The symbol \models
(6) The equivalence of $\neg(\exists x P)$ and $\forall x(\neg P)$.
(III) Proof.
(1) Axioms.
(2) Rules of deduction.
(3) The symbol \vdash
(IV) The relationship between truth and provability.

