The Principle of Inclusion and Exclusion.

Version 1. The principle of incl./exlc. counts the size of a union.

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\cdots+(-1)^{n+1}\left|A_{1} \cap \cdots \cap A_{n}\right| .
$$

Version 2. Let X be a set and let \mathcal{P} be a set of properties the elements of X may have. If $N_{=}(S)$ is the number of elements of X that have exactly the properties in $S \subseteq \mathcal{P}$ and $N_{\geq}(S)$ is the number of elements of X that have at least the properties in $S \subseteq \mathcal{P}$, then

$$
\begin{aligned}
& N_{\geq}(S)=\sum_{S \subseteq T \subseteq \mathcal{P}} N_{=}(T) \quad \text { and } \\
& N_{=}(S)=\sum_{S \subseteq T \subseteq \mathcal{P}}(-1)^{|T|-|S|} N_{\geq}(T) .
\end{aligned}
$$

The first formula is trivial; the principle of inclusion and exclusion is the second formula.

Exercises.

(1) How many positive integers less than 1000 are not divisible by $2,3,5$ or 7 ?
$1000-500-333-200-142+166+100+71+66+47+28-33-23-14-9+4=228$.
(2) How many positive integers less than 250 are not perfect powers?

It suffices to count the elements of $\{2,3, \ldots, 250\}$ that are not squares, cubes, 5 th powers or 7 th powers. This is similar to the previous problem. The answer is 226 .
(3) How many 5 digit numbers fail to contain the sequence 01 ? How about 00 ?

First part:

$$
10^{5}-4 \cdot 10^{3}+3 \cdot 10=96030
$$

Second part:

$$
10^{5}-4 \cdot 10^{3}+3 \cdot 10^{2}+3 \cdot 10-22+1=96309
$$

(4) How many 6 digit numbers have the property that, for every k, the k th digit is different than the $(7-k)$ th digit?

$$
\binom{3}{0} 10^{6}-\binom{3}{1} 10^{5}+\binom{3}{2} 10^{4}-\binom{3}{3} 10^{3}=10^{3} 9^{3}=729000
$$

