## The Principle of Inclusion and Exclusion!

Version 1. The principle of inclusion and exclusion is used to count the size of a union.

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+(-1)^{n+1}\left|A_{1} \cap \cdots \cap A_{n}\right| .
$$

Version 2. Let $X$ be a set and let $\mathcal{P}$ be a set of properties the elements of $X$ may have. If $N_{=}(S)$ is the number of elements of $X$ that have exactly the properties in $S \subseteq \mathcal{P}$ and $N_{\geq}(S)$ is the number of elements of $X$ that have at least the properties in $S \subseteq \mathcal{P}$, then

$$
\begin{aligned}
& N_{\geq}(S)=\sum_{S \subseteq T \subseteq \mathcal{P}} N_{=}(T) \quad \text { and } \\
& N_{=}(S)=\sum_{S \subseteq T \subseteq \mathcal{P}}(-1)^{|T|-|S|} N_{\geq}(T) .
\end{aligned}
$$

The first formula is trivial; the principle of inclusion and exclusion is the second formula.

## Exercises.

(1) (a) What is the number of surjective functions $f: 5 \rightarrow 3$ ? (Hints: Let $X$ be the set of all functions from 5 to 3 . Let $\mathcal{P}=\left\{P_{0}, P_{1}, P_{2}\right\}$ be the set of properties where $P_{i}$ is the property of $f \in X$ which says $i \notin \operatorname{im}(f)$. Compute $N_{=}(\emptyset)$.)
(b) What is the number of surjective functions $f: n \rightarrow k$ ?
(2) How many positive integers less than 1000 are not divisible by $2,3,5$ or 7 ?
(3) How many positive integers less than 250 are not perfect powers?
(4) How many 5 digit numbers fail to contain the sequence 01 ? How about 00 ?
(5) How many 6 digit numbers have the property that, for every $k$, the $k$ th digit is different than the $(7-k)$ th digit?

