The Principle of Inclusion and Exclusion!

Version 1. The principle of inclusion and exclusion is used to count the size of a union.

$$|A_1 \cup \dots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n+1} |A_1 \cap \dots \cap A_n|.$$

Version 2. Let X be a set and let \mathcal{P} be a set of properties the elements of X may have. If $N_{=}(S)$ is the number of elements of X that have exactly the properties in $S \subseteq \mathcal{P}$ and $N_{\geq}(S)$ is the number of elements of X that have at least the properties in $S \subseteq \mathcal{P}$, then

$$\begin{split} N_{\geq}(S) &= \sum_{S \subseteq T \subseteq \mathcal{P}} N_{=}(T) \quad \text{and} \\ N_{=}(S) &= \sum_{S \subseteq T \subseteq \mathcal{P}} (-1)^{|T| - |S|} N_{\geq}(T) \end{split}$$

The first formula is trivial; the principle of inclusion and exclusion is the second formula.

Exercises.

- (1) (a) What is the number of surjective functions $f: 5 \to 3$? (Hints: Let X be the set of <u>all</u> functions from 5 to 3. Let $\mathcal{P} = \{P_0, P_1, P_2\}$ be the set of properties where P_i is the property of $f \in X$ which says $i \notin \operatorname{im}(f)$. Compute $N_{=}(\emptyset)$.)
 - (b) What is the number of surjective functions $f: n \to k$?
- (2) How many positive integers less than 1000 are not divisible by 2, 3, 5 or 7?
- (3) How many positive integers less than 250 are not perfect powers?
- (4) How many 5 digit numbers fail to contain the sequence 01? How about 00?
- (5) How many 6 digit numbers have the property that, for every k, the kth digit is different than the (7 k)th digit?