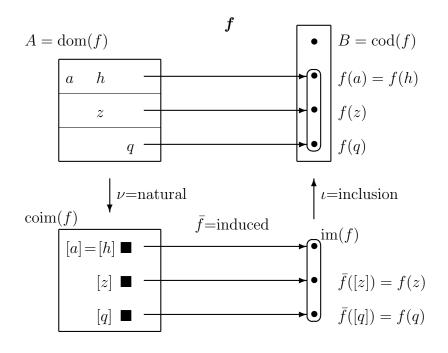
Terminology for functions.

Let A and B be sets and let $f: A \to B$ be a function from A to B. There are sets and functions related to A, B and f that have special names.



- (1) The image of f is $im(f) = f[A] = \{b \in B : \exists a \in A(f(a) = b)\}$. The image of a subset $U \subseteq A$ is $f[U] = \{b \in B : \exists u \in U(f(u) = b)\}$.
- (2) The preimage or inverse image of a subset $V \subseteq B$ is $f^{-1}[V] = \{a \in A : f(a) \in V\}$.
- (3) The preimage of a singleton $\{b\}$ is written $f^{-1}(b)$ and sometimes called the *fiber* of f over b. The fiber containing the element a is sometimes written [a].
- (4) The coimage of f is the set $\operatorname{coim}(f) = \{f^{-1}(b) : b \in \operatorname{im}(f)\}$ of all fibers.
- (5) The natural map is $\nu: A \to \operatorname{coim}(f): a \mapsto [a]$. (This says $\nu(a) = [a]$.)
- (6) The inclusion map is $\iota: \operatorname{im}(f) \to B: b \mapsto b$. (This says $\iota(b) = b$.)
- (7) The induced map is \bar{f} : coim $(f) \to im(f)$: $[a] \mapsto f(a)$. (This says $\bar{f}([a]) = f(a)$.)

Some facts:

- (1) The natural map is *surjective*.
- (2) The inclusion map is *injective*.
- (3) The induced map is *bijective*.
- (4) $f = \iota \circ \overline{f} \circ \nu$. (This is the canonical factorization of f.)