Formulas for Distributions.

How many ways can one distribute k balls to n distinct boxes?

Assumption 1. No bound on the number of balls per box.

Each box must get a ball?

Balls distinct?

	Yes	No
Yes	n!S(k,n)	n^k
No	$\binom{n}{k-n}$	$\binom{n}{k}$

Assumption 2. Each box gets at most one ball (so $k \leq n$).

Each box must get a ball?

Balls distinct?

	Yes (so $k = n$)	No
Yes	n!	$(n)_k$
No	1	$\binom{n}{k}$

- (1) How many ways are there to distribute 12 different books to 3 people? What if each person must get at least one book?
- (2) How many ways are there to distribute 12 identical textbooks to three shelves? How many ways to distribute 12 different books to three shelves?
- (3) How many 5 digit numbers have their digits in increasing or decreasing order? How many have their digits in nondecreasing or nonincreasing order? (If n = abcde, then the digits are in increasing order if a < b < c < d < e and in nondecreasing order if $a \le b \le c \le d \le e$.)
- (4) How many positive integral solutions are there to the equation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 100$? How many nonnegative integral solutions are there?
- (5) How many ways are there to make 3 fruit baskets from 8 pineapples, 10 pomegranates, 6 coconuts and 20 figs if each basket must contain each kind of fruit?