DISCRETE MATH (MATH 2001)

REVIEW SHEET I

I. Set Theory

- (a) Informal notion of a set.
- (b) The axioms of set theory (ZFC).
- (c) Venn diagrams versus the directed graph model of set theory.
- (d) Constructions of new sets (pairing, union, power set, separation, intersection).
- (e) Empty set, successor of a set.
- (f) Inductive sets, natural numbers.
- (g) Naive set theory is inconsistent. Russell's Paradox.
- (h) Classes. The union of a set of sets is a set, while the intersection of a nonempty class of sets is a set.

II. Relations

- (a) Ordered pairs (Kuratowski encoding), triples, and n-tuples. Cartesian product.
- (b) Relations. Directed graph representation of binary relations.
- (c) Connection between relations and predicates.
- (d) Definition of a function. Definition of an operation.

- (e) Domain, codomain, image, coimage. Canonical factorization of a function.
- (f) Inclusion map, identity map, natural map, induced map.
- (g) Injections, surjections, bijections. Composition.
- (h) Coimage versus kernel. Partition versus equivalence relation.

III. Recursion and induction

- (a) \mathbb{N} is the least inductive set.
- (b) Recursion Theorem.
- (c) Induction is a valid form of proof.
- (d) Recursive definitions of arithmetic operations on \mathbb{N} : $x + y, xy, x^y$.
- (e) Use of induction to prove laws of arithmetic.
- (f) Course-of-values recursion or induction.

IV. Cardinality.

- (a) Finite and infinite. Countable and uncountable.
- (b) Meaning of $|A| \le |B|$, |A| = |B|, and |A| < |B|.
- (c) Ordinal numbers versus cardinal numbers.
- (d) Cantor-Bernstein-Schroeder Theorem.
- (e) Cantor's Theorem.
- (f) $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$.

General advice on preparing for a math test.

Be prepared to demonstrate understanding in the following ways.

- (i) Know the definitions of new concepts, and the meanings of the definitions.
- (ii) Know the statements and meanings of the major theorems.
- (iii) Know examples/counterexamples. (The purpose of an example is to illustrate the extent of a definition or theorem. The purpose of a counterexample is to indicate the limits of a definition or theorem.)
- (iv) Know how to perform the different kinds of calculations discussed in class.
- (v) Be prepared to prove elementary statements. (Understanding the proofs done in class is the best preparation for this.)
- (vi) Know how to correct mistakes made on old HW.

Practice Problems.

(1) How do you answer a question where you are asked to "Give an example"?

Give an example of such a question.

(2) How do you answer a question where you are asked to "Give a definition"?

Define "definition".

(3) If you are asked to "Give a proof or counterexample", how do you decide which thing to do?

(If the statement is true you give a proof, if the statement is false you give a counterexample.)

Give a proof or counterexample to the claim "Every prime is odd." (The statement is false and a counterexample is p = 2.)

- (4) Show that if $A \subseteq B$ and $B \subseteq A$, then A = B.
- (5) Is it always true that $A \subseteq \mathcal{P}(A)$? If your answer is "No", is it sometimes true? (Hint: The statement is not always true. In fact, the statement " $A \subseteq \mathcal{P}(A)$ " is a symbolic way to say "A is a transitive set". Therefore, the statement is true if A is a transitive set (e.g. if A = 3) and is false if A is not a transitive set (e.g. if $A = \{3\}$).)
- (6) Show that $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.
- (7) What is a function? (Give the definition.)
- (8) For the function $f: \{0,1,2\} \to \{a,b,c\} : 0 \mapsto a,1 \mapsto a,2 \mapsto b$, write down each of the following sets.
 - (a) dom(f)
 - (b) cod(f)
 - (c) im(f)
 - (d) coim(f) ($coim(f) = \{\{0, 1\}, \{2\}\}.$)
 - (e) ν (the natural map, written as a set)
 - (f) \overline{f} (the induced map, written as a set) $(\overline{f} = \{(\{0,1\},a),(\{2\},b)\}.)$
 - (g) ι (the inclusion map, written as a set)
 - (h) ker(f)
- (9) Justify the claims that: (i) the squaring function $f: \mathbb{R} \to \mathbb{R} \colon x \mapsto x^2$ and the absolute value function $g: \mathbb{R} \to \mathbb{R} \colon x \mapsto |x|$ have the same kernel and image, but (ii) they are different functions.

(Hint for part (ii): f and g are different since $f(2) \neq g(2)$.)

- (10) How many functions are there of the form $f: \mathbb{N} \to \emptyset$? How many functions are there of the form $f: \mathbb{N} \to \{\emptyset\}$? (Hints: Answer to first question is 0. Answer to second question is 1.)
- (11) How many different partitions are there on the set $X = \{1, 2, 3\}$? How many different equivalence relations on X are there?

- (12) Give examples of binary relations on \mathbb{N} that are:
 - (a) reflexive and symmetric, but not transitive.
 - (b) reflexive and transitive, but not symmetric.
 - (c) symmetric and transitive, but not reflexive. (Some possible answers: (a) $\{(x,y) \in \mathbb{N}^2 \mid |x-y| \leq 1\}$, (b) \leq , (c) \emptyset .)
- (13) Explain why induction is a valid form of proof.
- (14) Prove that m(n+k) = (mn) + (mk) for all $m, n, k \in \mathbb{N}$.
- (15) Prove that $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ by induction.
- (16) State the theorem.
 - (a) Russell's paradox.
 - (b) Recursion Theorem.
 - (c) Cantor's Theorem.
 - (d) Cantor-Bernstein-Schroeder Theorem.
- (17) True or False? Explain. (Hint: All are true except (b).)
 - (a) If $A \times A = B \times B$, then A = B.
 - (b) If $A \times B = B \times A$, then A = B.
 - (c) The class of equivalence relations on \mathbb{N} is a set.
 - (d) The intersection of the class of all sets is a set.
 - (e) If $A \subseteq B \subseteq C$ and |A| = |C|, then |A| = |B|.
 - (f) If A has an uncountable subset, then A is uncountable.