# **Counting Problems**

#### Sum Rule.

Sum Rule. (Or "Additive counting principle")

Sum Rule. (Or "Additive counting principle") If *A* and *B* are disjoint finite sets, then  $|A \cup B| = |A| + |B|$ .

**Sum Rule.** (Or "Additive counting principle") If *A* and *B* are disjoint finite sets, then  $|A \cup B| = |A| + |B|$ .

**Product Rule.** 

Sum Rule. (Or "Additive counting principle") If *A* and *B* are disjoint finite sets, then  $|A \cup B| = |A| + |B|$ .

Product Rule. (Or "Multiplicative counting principle")

Sum Rule. (Or "Additive counting principle") If *A* and *B* are disjoint finite sets, then  $|A \cup B| = |A| + |B|$ .

**Product Rule.** (Or "Multiplicative counting principle") If *A* and *B* are finite sets, then  $|A \times B| = |A| \cdot |B|$ .

Sum Rule. (Or "Additive counting principle") If *A* and *B* are disjoint finite sets, then  $|A \cup B| = |A| + |B|$ .

**Product Rule.** (Or "Multiplicative counting principle") If *A* and *B* are finite sets, then  $|A \times B| = |A| \cdot |B|$ .

In general, the Sum Rule is suggested when (exclusive) "OR" is being counted, while the Product Rule is suggested when (independent) "AND" is being counted.

#### Theorem.

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

Proof.

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

*Proof.* Induction on |X|.

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

*Proof.* Induction on |X|.

(**Base case**, *n* = 0.)

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

*Proof.* Induction on |X|.

(Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

*Proof.* Induction on |X|.

(Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

*Proof.* Induction on |X|.

(Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ .

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

*Proof.* Induction on |X|.

(Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ . (Inductive step.)

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

*Proof.* Induction on |X|.

(Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ .

(**Inductive step.**) Assume the theorem is true for sets of size *n*, and let's prove it for some set  $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$  of size n + 1.

- **Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .
- *Proof.* Induction on |X|.
- (Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ .

(**Inductive step.**) Assume the theorem is true for sets of size *n*, and let's prove it for some set  $X_{n+1} = \{x_1, \ldots, x_n, x_{n+1}\}$  of size n + 1.

Let  $A \subseteq \mathcal{P}(X_{n+1})$  be the set of those subsets of *X* that do not contain the last element,  $x_{n+1}$ , and let *B* be the set of those subsets of *X* that do contain the last element,  $x_{n+1}$ .

- **Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .
- *Proof.* Induction on |X|.
- (Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ .

(**Inductive step.**) Assume the theorem is true for sets of size *n*, and let's prove it for some set  $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$  of size n + 1.

Let  $A \subseteq \mathcal{P}(X_{n+1})$  be the set of those subsets of *X* that do not contain the last element,  $x_{n+1}$ , and let *B* be the set of those subsets of *X* that do contain the last element,  $x_{n+1}$ .  $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$ .

- **Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .
- *Proof.* Induction on |X|.
- (Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ .

(**Inductive step.**) Assume the theorem is true for sets of size *n*, and let's prove it for some set  $X_{n+1} = \{x_1, \ldots, x_n, x_{n+1}\}$  of size n + 1.

Let  $A \subseteq \mathcal{P}(X_{n+1})$  be the set of those subsets of *X* that do not contain the last element,  $x_{n+1}$ , and let *B* be the set of those subsets of *X* that do contain the last element,  $x_{n+1}$ .  $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$ .  $\mathcal{P}(X_{n+1})$  is the disjoint union of *A* and *B*.

- **Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .
- *Proof.* Induction on |X|.
- (Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ .

(**Inductive step.**) Assume the theorem is true for sets of size *n*, and let's prove it for some set  $X_{n+1} = \{x_1, \ldots, x_n, x_{n+1}\}$  of size n + 1.

Let  $A \subseteq \mathcal{P}(X_{n+1})$  be the set of those subsets of *X* that do not contain the last element,  $x_{n+1}$ , and let *B* be the set of those subsets of *X* that do contain the last element,  $x_{n+1}$ .  $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$ .  $\mathcal{P}(X_{n+1})$  is the disjoint union of *A* and *B*. (A subset of  $X_{n+1}$  lies in either *A* OR *B*,

- **Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .
- *Proof.* Induction on |X|.
- (Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ .

(**Inductive step.**) Assume the theorem is true for sets of size *n*, and let's prove it for some set  $X_{n+1} = \{x_1, \ldots, x_n, x_{n+1}\}$  of size n + 1.

Let  $A \subseteq \mathcal{P}(X_{n+1})$  be the set of those subsets of *X* that do not contain the last element,  $x_{n+1}$ , and let *B* be the set of those subsets of *X* that do contain the last element,  $x_{n+1}$ .  $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$ .  $\mathcal{P}(X_{n+1})$  is the disjoint union of *A* and *B*. (A subset of  $X_{n+1}$  lies in either *A* OR *B*, but not both).

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

*Proof.* Induction on |X|.

(Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ .

(**Inductive step.**) Assume the theorem is true for sets of size *n*, and let's prove it for some set  $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$  of size n + 1.

Let  $A \subseteq \mathcal{P}(X_{n+1})$  be the set of those subsets of *X* that do not contain the last element,  $x_{n+1}$ , and let *B* be the set of those subsets of *X* that do contain the last element,  $x_{n+1}$ .  $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$ .  $\mathcal{P}(X_{n+1})$  is the disjoint union of *A* and *B*. (A subset of  $X_{n+1}$  lies in either *A* OR *B*, but not both). By the Sum Rule,

- **Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .
- *Proof.* Induction on |X|.
- (Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ .

(**Inductive step.**) Assume the theorem is true for sets of size *n*, and let's prove it for some set  $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$  of size n + 1.

Let  $A \subseteq \mathcal{P}(X_{n+1})$  be the set of those subsets of *X* that do not contain the last element,  $x_{n+1}$ , and let *B* be the set of those subsets of *X* that do contain the last element,  $x_{n+1}$ .  $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$ .  $\mathcal{P}(X_{n+1})$  is the disjoint union of *A* and *B*. (A subset of  $X_{n+1}$  lies in either *A* OR *B*, but not both). By the Sum Rule,  $|\mathcal{P}(X_{n+1})| = |A| + |B| = 2^n + 2^n = 2^{n+1}$ .

- **Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .
- *Proof.* Induction on |X|.
- (Base case, n = 0.)  $|X| = 0 \Rightarrow X = \emptyset$ ,  $\mathcal{P}(X) = \{\emptyset\}$ ,  $|\mathcal{P}(X)| = 1 = 2^0$ .

(**Inductive step.**) Assume the theorem is true for sets of size *n*, and let's prove it for some set  $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$  of size n + 1.

Let  $A \subseteq \mathcal{P}(X_{n+1})$  be the set of those subsets of *X* that do not contain the last element,  $x_{n+1}$ , and let *B* be the set of those subsets of *X* that do contain the last element,  $x_{n+1}$ .  $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$ .  $\mathcal{P}(X_{n+1})$  is the disjoint union of *A* and *B*. (A subset of  $X_{n+1}$  lies in either *A* OR *B*, but not both). By the Sum Rule,  $|\mathcal{P}(X_{n+1})| = |A| + |B| = 2^n + 2^n = 2^{n+1}$ .  $\Box$ 

#### Theorem.

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

Proof.

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

*Proof.* We count the number of subsets of *X* by counting the number of "descriptions" of subsets.

**Theorem.** If |X| = n, then  $|\mathcal{P}(X)| = 2^n$ .

*Proof.* We count the number of subsets of *X* by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions  $c: X \to \{0, 1\}$ .

#### **Theorem.** If |X| = n, then $|\mathcal{P}(X)| = 2^n$ .

*Proof.* We count the number of subsets of *X* by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions  $c: X \to \{0, 1\}$ . A subset  $S = \{2, 3, 5\}$  of  $X = \{1, 2, 3, ..., n\}$  may be "described" by its characteristic function:

#### **Theorem.** If |X| = n, then $|\mathcal{P}(X)| = 2^n$ .

*Proof.* We count the number of subsets of *X* by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions  $c: X \to \{0, 1\}$ . A subset  $S = \{2, 3, 5\}$  of  $X = \{1, 2, 3, ..., n\}$  may be "described" by its characteristic function:  $(c(x) = 1 \text{ iff } x \in S)$ 

#### **Theorem.** If |X| = n, then $|\mathcal{P}(X)| = 2^n$ .

*Proof.* We count the number of subsets of *X* by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions  $c: X \to \{0, 1\}$ . A subset  $S = \{2, 3, 5\}$  of  $X = \{1, 2, 3, ..., n\}$  may be "described" by its characteristic function:  $(c(x) = 1 \text{ iff } x \in S)$ 



#### **Theorem.** If |X| = n, then $|\mathcal{P}(X)| = 2^n$ .

*Proof.* We count the number of subsets of *X* by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions  $c: X \to \{0, 1\}$ . A subset  $S = \{2, 3, 5\}$  of  $X = \{1, 2, 3, ..., n\}$  may be "described" by its characteristic function:  $(c(x) = 1 \text{ iff } x \in S)$ 

| x    | 1 | 2 | 3 | 4 | 5 | ••• | n |
|------|---|---|---|---|---|-----|---|
| c(x) | 0 | 1 | 1 | 0 | 1 | ••• | 0 |

There are 2 choices for c(1), 2 (independent) choices for c(2), ..., 2 choices for c(n), so  $|X| = 2 \cdot 2 \cdot \cdot \cdot 2 = 2^n$ .

#### **Theorem.** If |X| = n, then $|\mathcal{P}(X)| = 2^n$ .

*Proof.* We count the number of subsets of *X* by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions  $c: X \to \{0, 1\}$ . A subset  $S = \{2, 3, 5\}$  of  $X = \{1, 2, 3, ..., n\}$  may be "described" by its characteristic function:  $(c(x) = 1 \text{ iff } x \in S)$ 

| x    | 1 | 2 | 3 | 4 | 5 | ••• | n |
|------|---|---|---|---|---|-----|---|
| c(x) | 0 | 1 | 1 | 0 | 1 | ••• | 0 |

There are 2 choices for c(1), 2 (independent) choices for c(2), ..., 2 choices for c(n), so  $|X| = 2 \cdot 2 \cdot \cdot \cdot 2 = 2^n$ .  $\Box$ 

#### **Theorem.** If |X| = n, then $|\mathcal{P}(X)| = 2^n$ .

*Proof.* We count the number of subsets of *X* by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions  $c: X \to \{0, 1\}$ . A subset  $S = \{2, 3, 5\}$  of  $X = \{1, 2, 3, ..., n\}$  may be "described" by its characteristic function:  $(c(x) = 1 \text{ iff } x \in S)$ 

| x    | 1 | 2 | 3 | 4 | 5 | ••• | n |
|------|---|---|---|---|---|-----|---|
| c(x) | 0 | 1 | 1 | 0 | 1 | ••• | 0 |

There are 2 choices for c(1), 2 (independent) choices for c(2), ..., 2 choices for c(n), so  $|X| = 2 \cdot 2 \cdots 2 = 2^n$ .  $\Box$ 

Here we used the fact that a subset  $S \subseteq X$  can be described by specifying whether  $1 \in S$  AND specifying whether  $2 \in X$ , etc.

#### Theorem.

**Theorem.** The number of functions  $f: k \to n$  is  $n^k$ .

Proof.

**Theorem.** The number of functions  $f: k \to n$  is  $n^k$ .

Proof. Count descriptions of such functions.

**Theorem.** The number of functions  $f: k \to n$  is  $n^k$ .

Proof. Count descriptions of such functions.

x
1
2
3
4
5
$$\cdots$$
k

f(x)
0
7
1
0
2
 $\cdots$ 
3

**Theorem.** The number of functions  $f: k \to n$  is  $n^k$ .

Proof. Count descriptions of such functions.

x
1
2
3
4
5
$$\cdots$$
k

f(x)
0
7
1
0
2
 $\cdots$ 
3

There are *n* choices for f(0), *n* (independent) choices for f(1), etc.

**Theorem.** The number of functions  $f: k \to n$  is  $n^k$ .

Proof. Count descriptions of such functions.

x
1
2
3
4
5
$$\cdots$$
k

f(x)
0
7
1
0
2
 $\cdots$ 
3

There are *n* choices for f(0), *n* (independent) choices for f(1), etc. Hence the number of functions is  $n \cdot n \cdots n = n^k$ .

**Theorem.** The number of functions  $f: k \to n$  is  $n^k$ .

Proof. Count descriptions of such functions.

x
1
2
3
4
5
$$\cdots$$
k

f(x)
0
7
1
0
2
 $\cdots$ 
3

There are *n* choices for f(0), *n* (independent) choices for f(1), etc. Hence the number of functions is  $n \cdot n \cdots n = n^k$ .  $\Box$ 

#### Theorem.

**Theorem.** The number of bijections from *k* to *n* is 0 if  $k \neq n$ ; otherwise it is *n*!.

**Theorem.** The number of bijections from *k* to *n* is 0 if  $k \neq n$ ; otherwise it is *n*!.

Proof.

**Theorem.** The number of bijections from *k* to *n* is 0 if  $k \neq n$ ; otherwise it is *n*!.

Proof. Count descriptions of such functions. ...

#### Theorem.

**Theorem.** The number of injections from *k* to *n* is

$$(n)_k = \underbrace{n \cdot (n-1) \cdots (n-k+1)}_{k \text{ factors}}.$$

**Theorem.** The number of injections from k to n is

$$(n)_k = \underbrace{n \cdot (n-1) \cdots (n-k+1)}_{k \text{ factors}}.$$

 $(n)_k$  is called a "falling factorial".

**Theorem.** The number of injections from k to n is

$$(n)_k = \underbrace{n \cdot (n-1) \cdots (n-k+1)}_{k \text{ factors}}.$$

 $(n)_k$  is called a "falling factorial".

Proof.

**Theorem.** The number of injections from *k* to *n* is

$$(n)_k = \underbrace{n \cdot (n-1) \cdots (n-k+1)}_{k \text{ factors}}.$$

 $(n)_k$  is called a "falling factorial".

Proof. Count descriptions of such functions. ...

Exercises.

• How many cows do I have?

Exercises.

• How many cows do I have?

- How many cows do I have?
- Show that the number of 2-element subsets of *n* is n(n-1)/2.

- How many cows do I have?
- Show that the number of 2-element subsets of *n* is n(n-1)/2.

- How many cows do I have?
- Show that the number of 2-element subsets of *n* is n(n-1)/2.
- Show, more generally, that the number of *k*-element subsets of *n* is  $(n)_k/k! = {n \choose k}$ .

- How many cows do I have?
- Show that the number of 2-element subsets of *n* is n(n-1)/2.
- Show, more generally, that the number of *k*-element subsets of *n* is  $(n)_k/k! = {n \choose k}$ .

- How many cows do I have?
- Show that the number of 2-element subsets of *n* is n(n-1)/2.
- Show, more generally, that the number of *k*-element subsets of *n* is  $(n)_k/k! = {n \choose k}$ .