Counting Problems

Two basic counting principles

Two basic counting principles

Sum Rule.

Two basic counting principles

Sum Rule. (Or "Additive counting principle")

Two basic counting principles

Sum Rule. (Or "Additive counting principle") If A and B are disjoint finite sets, then $|A \cup B|=|A|+|B|$.

Two basic counting principles

Sum Rule. (Or "Additive counting principle") If A and B are disjoint finite sets, then $|A \cup B|=|A|+|B|$.

Product Rule.

Two basic counting principles

Sum Rule. (Or "Additive counting principle") If A and B are disjoint finite sets, then $|A \cup B|=|A|+|B|$.

Product Rule. (Or "Multiplicative counting principle")

Two basic counting principles

Sum Rule. (Or "Additive counting principle") If A and B are disjoint finite sets, then $|A \cup B|=|A|+|B|$.

Product Rule. (Or "Multiplicative counting principle") If A and B are finite sets, then $|A \times B|=|A| \cdot|B|$.

Two basic counting principles

Sum Rule. (Or "Additive counting principle") If A and B are disjoint finite sets, then $|A \cup B|=|A|+|B|$.

Product Rule. (Or "Multiplicative counting principle") If A and B are finite sets, then $|A \times B|=|A| \cdot|B|$.

In general, the Sum Rule is suggested when (exclusive) "OR" is being counted, while the Product Rule is suggested when (independent) "AND" is being counted.

Size of a power set using the Sum Rule

Size of a power set using the Sum Rule

Theorem.

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof.

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.)

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset$,

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\}$,

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.
(Inductive step.)

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.
(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1}=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$ of size $n+1$.

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.
(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1}=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$ of size $n+1$.

Let $A \subseteq \mathcal{P}\left(X_{n+1}\right)$ be the set of those subsets of X that do not contain the last element, x_{n+1}, and let B be the set of those subsets of X that do contain the last element, x_{n+1}.

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.
(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1}=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$ of size $n+1$.

Let $A \subseteq \mathcal{P}\left(X_{n+1}\right)$ be the set of those subsets of X that do not contain the last element, x_{n+1}, and let B be the set of those subsets of X that do contain the last element, $x_{n+1} .|A|=|B|=\left|\mathcal{P}\left(X_{n}\right)\right|=2^{n}$.

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.
(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1}=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$ of size $n+1$.

Let $A \subseteq \mathcal{P}\left(X_{n+1}\right)$ be the set of those subsets of X that do not contain the last element, x_{n+1}, and let B be the set of those subsets of X that do contain the last element, $x_{n+1} .|A|=|B|=\left|\mathcal{P}\left(X_{n}\right)\right|=2^{n} . \mathcal{P}\left(X_{n+1}\right)$ is the disjoint union of A and B.

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.
(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1}=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$ of size $n+1$.

Let $A \subseteq \mathcal{P}\left(X_{n+1}\right)$ be the set of those subsets of X that do not contain the last element, x_{n+1}, and let B be the set of those subsets of X that do contain the last element, $x_{n+1} .|A|=|B|=\left|\mathcal{P}\left(X_{n}\right)\right|=2^{n} . \mathcal{P}\left(X_{n+1}\right)$ is the disjoint union of A and B. (A subset of X_{n+1} lies in either A OR B,

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.
(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1}=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$ of size $n+1$.

Let $A \subseteq \mathcal{P}\left(X_{n+1}\right)$ be the set of those subsets of X that do not contain the last element, x_{n+1}, and let B be the set of those subsets of X that do contain the last element, $x_{n+1} .|A|=|B|=\left|\mathcal{P}\left(X_{n}\right)\right|=2^{n} . \mathcal{P}\left(X_{n+1}\right)$ is the disjoint union of A and B. (A subset of X_{n+1} lies in either A OR B, but not both).

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.
(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1}=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$ of size $n+1$.

Let $A \subseteq \mathcal{P}\left(X_{n+1}\right)$ be the set of those subsets of X that do not contain the last element, x_{n+1}, and let B be the set of those subsets of X that do contain the last element, $x_{n+1} .|A|=|B|=\left|\mathcal{P}\left(X_{n}\right)\right|=2^{n} . \mathcal{P}\left(X_{n+1}\right)$ is the disjoint union of A and B. (A subset of X_{n+1} lies in either A OR B, but not both). By the Sum Rule,

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.
(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1}=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$ of size $n+1$.

Let $A \subseteq \mathcal{P}\left(X_{n+1}\right)$ be the set of those subsets of X that do not contain the last element, x_{n+1}, and let B be the set of those subsets of X that do contain the last element, $x_{n+1} .|A|=|B|=\left|\mathcal{P}\left(X_{n}\right)\right|=2^{n} . \mathcal{P}\left(X_{n+1}\right)$ is the disjoint union of A and B. (A subset of X_{n+1} lies in either A OR B, but not both). By the Sum Rule, $\left|\mathcal{P}\left(X_{n+1}\right)\right|=|A|+|B|=2^{n}+2^{n}=2^{n+1}$.

Size of a power set using the Sum Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. Induction on $|X|$.
(Base case, $n=0$.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\},|\mathcal{P}(X)|=1=2^{0}$.
(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1}=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$ of size $n+1$.

Let $A \subseteq \mathcal{P}\left(X_{n+1}\right)$ be the set of those subsets of X that do not contain the last element, x_{n+1}, and let B be the set of those subsets of X that do contain the last element, $x_{n+1} .|A|=|B|=\left|\mathcal{P}\left(X_{n}\right)\right|=2^{n} . \mathcal{P}\left(X_{n+1}\right)$ is the disjoint union of A and B. (A subset of X_{n+1} lies in either A OR B, but not both).
By the Sum Rule, $\left|\mathcal{P}\left(X_{n+1}\right)\right|=|A|+|B|=2^{n}+2^{n}=2^{n+1}$. \square

Size of a power set using the Product Rule

Size of a power set using the Product Rule

Theorem.

Size of a power set using the Product Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.

Size of a power set using the Product Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof.

Size of a power set using the Product Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets.

Size of a power set using the Product Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c: X \rightarrow\{0,1\}$.

Size of a power set using the Product Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c: X \rightarrow\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3, \ldots, n\}$ may be "described" by its characteristic function:

Size of a power set using the Product Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c: X \rightarrow\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3, \ldots, n\}$ may be "described" by its characteristic function: $(c(x)=1$ iff $x \in S)$

Size of a power set using the Product Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c: X \rightarrow\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3, \ldots, n\}$ may be "described" by its characteristic function: $(c(x)=1$ iff $x \in S)$

x	1	2	3	4	5	\cdots	n
$c(x)$	0	1	1	0	1	\cdots	0

Size of a power set using the Product Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c: X \rightarrow\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3, \ldots, n\}$ may be "described" by its characteristic function: $(c(x)=1$ iff $x \in S)$

x	1	2	3	4	5	\cdots	n
$c(x)$	0	1	1	0	1	\cdots	0

There are 2 choices for $c(1), 2$ (independent) choices for $c(2), \ldots, 2$ choices for $c(n)$, so $|X|=2 \cdot 2 \cdots 2=2^{n}$.

Size of a power set using the Product Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c: X \rightarrow\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3, \ldots, n\}$ may be "described" by its characteristic function: $(c(x)=1$ iff $x \in S)$

x	1	2	3	4	5	\cdots	n
$c(x)$	0	1	1	0	1	\cdots	0

There are 2 choices for $c(1), 2$ (independent) choices for $c(2), \ldots, 2$ choices for $c(n)$, so $|X|=2 \cdot 2 \cdots 2=2^{n}$.

Size of a power set using the Product Rule

Theorem. If $|X|=n$, then $|\mathcal{P}(X)|=2^{n}$.
Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c: X \rightarrow\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3, \ldots, n\}$ may be "described" by its characteristic function: $(c(x)=1$ iff $x \in S)$

x	1	2	3	4	5	\cdots	n
$c(x)$	0	1	1	0	1	\cdots	0

There are 2 choices for $c(1), 2$ (independent) choices for $c(2), \ldots, 2$ choices for $c(n)$, so $|X|=2 \cdot 2 \cdots 2=2^{n}$.

Here we used the fact that a subset $S \subseteq X$ can be described by specifying whether $1 \in S$ AND specifying whether $2 \in X$, etc.

Number of functions from k to n

Number of functions from k to n

Theorem.

Number of functions from k to n

Theorem. The number of functions $f: k \rightarrow n$ is n^{k}.
Proof.

Number of functions from k to n

Theorem. The number of functions $f: k \rightarrow n$ is n^{k}.
Proof. Count descriptions of such functions.

Number of functions from k to n

Theorem. The number of functions $f: k \rightarrow n$ is n^{k}.
Proof. Count descriptions of such functions.

x	1	2	3	4	5	\cdots	k
$f(x)$	0	7	1	0	2	\cdots	3

Number of functions from k to n

Theorem. The number of functions $f: k \rightarrow n$ is n^{k}.
Proof. Count descriptions of such functions.

x	1	2	3	4	5	\cdots	k
$f(x)$	0	7	1	0	2	\cdots	3

There are n choices for $f(0), n$ (independent) choices for $f(1)$, etc.

Number of functions from k to n

Theorem. The number of functions $f: k \rightarrow n$ is n^{k}.
Proof. Count descriptions of such functions.

x	1	2	3	4	5	\cdots	k
$f(x)$	0	7	1	0	2	\cdots	3

There are n choices for $f(0), n$ (independent) choices for $f(1)$, etc. Hence the number of functions is $n \cdot n \cdots n=n^{k}$.

Number of functions from k to n

Theorem. The number of functions $f: k \rightarrow n$ is n^{k}.
Proof. Count descriptions of such functions.

x	1	2	3	4	5	\cdots	k
$f(x)$	0	7	1	0	2	\cdots	3

There are n choices for $f(0), n$ (independent) choices for $f(1)$, etc. Hence the number of functions is $n \cdot n \cdots n=n^{k}$. \square

Number of bijections from k to n

Number of bijections from k to n

Theorem.

Number of bijections from k to n

Theorem. The number of bijections from k to n is 0 if $k \neq n$; otherwise it is $n!$.

Number of bijections from k to n

Theorem. The number of bijections from k to n is 0 if $k \neq n$; otherwise it is $n!$.

Proof.

Number of bijections from k to n

Theorem. The number of bijections from k to n is 0 if $k \neq n$; otherwise it is $n!$.

Proof. Count descriptions of such functions. ...

Number of injections from k to n

Number of injections from k to n

Theorem.

Number of injections from k to n

Theorem. The number of injections from k to n is

$$
(n)_{k}=\underbrace{n \cdot(n-1) \cdots(n-k+1)}_{k \text { factors }} .
$$

Number of injections from k to n

Theorem. The number of injections from k to n is

$$
(n)_{k}=\underbrace{n \cdot(n-1) \cdots(n-k+1)}_{k \text { factors }} .
$$

$(n)_{k}$ is called a "falling factorial".

Number of injections from k to n

Theorem. The number of injections from k to n is

$$
(n)_{k}=\underbrace{n \cdot(n-1) \cdots(n-k+1)}_{k \text { factors }} .
$$

$(n)_{k}$ is called a "falling factorial".
Proof.

Number of injections from k to n

Theorem. The number of injections from k to n is

$$
(n)_{k}=\underbrace{n \cdot(n-1) \cdots(n-k+1)}_{k \text { factors }} .
$$

$(n)_{k}$ is called a "falling factorial".
Proof. Count descriptions of such functions. ...

Double counting (or over counting)

Double counting (or over counting)

Exercises.

Double counting (or over counting)

Exercises.

© How many cows do I have?

Double counting (or over counting)

Exercises.

© How many cows do I have?

Double counting (or over counting)

Exercises.
(1) How many cows do I have?
(2) Show that the number of 2-element subsets of n is $n(n-1) / 2$.

Double counting (or over counting)

Exercises.
(1) How many cows do I have?
(2) Show that the number of 2-element subsets of n is $n(n-1) / 2$.

Double counting (or over counting)

Exercises.

(1) How many cows do I have?
(2) Show that the number of 2-element subsets of n is $n(n-1) / 2$.
(3) Show, more generally, that the number of k-element subsets of n is $(n)_{k} / k!=\binom{n}{k}$.

Double counting (or over counting)

Exercises.

(1) How many cows do I have?
(2) Show that the number of 2-element subsets of n is $n(n-1) / 2$.
(3) Show, more generally, that the number of k-element subsets of n is $(n)_{k} / k!=\binom{n}{k}$.

Double counting (or over counting)

Exercises.

(1) How many cows do I have?
(2) Show that the number of 2-element subsets of n is $n(n-1) / 2$.
(3) Show, more generally, that the number of k-element subsets of n is $(n)_{k} / k!=\binom{n}{k}$.

