Cardinal and ordinal numbers.

Cardinal numbers (one, two three) are used to measure quantity, while ordinal numbers (first, second, third) are used put things in order.

Definition 1. (Ordinals)

- (1) A set T is transitive if $R \in S \in T$ implies $R \in T$.
- (2) An ordinal (number) is a transitive set of transitive sets.

The smallest ordinals are

$$\begin{array}{rcl}
0 & := \emptyset \\
1 & := \{0\} \\
2 & := \{0, 1\} \\
\vdots \\
\omega & := \{0, 1, 2, \ldots\} \\
\omega + 1 & := \{0, 1, 2, \ldots, \omega\}
\end{array}$$

We order ordinals by $\alpha < \beta \iff \alpha \in \beta$. Some basic properties of ordinals are

- (1) (Trichotomy) If α and β are ordinals, then exactly one of $\alpha < \beta$, $\alpha = \beta$, or $\beta < \alpha$ must hold.
- (2) Every ordinal is the set of its predecessors.
- (3) There is no infinite descending chain of ordinals. (Because of the Axiom of Foundation.)
- (4) (Well Ordering Theorem, Zermelo) Every set can be enumerated by an ordinal. (That is, for every set X there is an ordinal α and a bijection $f: \alpha \to X$.)

The Well Ordering Theorem allows us to count any set, but the ordinal α that appears in it is not unique. For example, it is clear that the identity is a bijection $f: \omega \to \omega$, but we saw in class that there is a bijection $g: \omega + 1 \rightarrow \omega$.

This non-uniqueness implies that the ordinal numbers are not appropriate for measuring size. For this we introduce cardinal numbers.

Definition 2. (Equipotence, Finiteness, Countability)

- (1) |A| = |B| means there is a bijection $f: A \to B$. We read this "The cardinality of A is equal to the cardinality of B". When |A = |B| we say that A and B are equipotent.
- (2) $|A| \leq |B|$ means there is an injection $q: A \to B$.
- (3) |A| < |B| means $|A| \le |B|$, but $|A| \ne |B|$.
- (4) X is *finite* if it is equipotent with a natural number.
- (5) X is *infinite* if it is not finite.
- (6) X is countably infinite if it is equipotent with ω .
- (7) X is *countable* if it is finite or countably infinite.
- (8) X is *uncountable* if it is not countable.

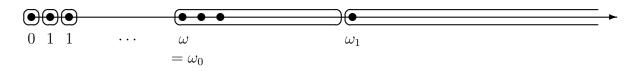
Theorem 3. (Cantor-Bernstein-Schröder) If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Corollary 4. $|\mathcal{P}(\mathbb{N})| = |(0,1)| = |\mathbb{R}|$

 $\mathbf{2}$

It follows from the CBS Theorem that equipotence classes of ordinals fall into intervals, as the next figure indicates.

Equipotence classes of ordinal numbers



The key features of this figure are

- (1) Equipotence classes are intervals. The classes of natural numbers are singletons.
- (2) Every equipotence class has a least element. (Such elements are called *initial ordi*nals.)
- (3) For every equipotence class, there is a strictly larger class.

To measure size, we pick one ordinal from each equipotence class. Since each class has a least element, that one is the natural choice.

Definition 5. A cardinal number is an initial ordinal.

When discussing cardinals, it is common to use the symbols $\aleph_0, \aleph_1, \aleph_2$ in place of $\omega_0, \omega_1, \omega_2$, ETC. \aleph (aleph) is the first letter of the Hebrew alphabet. We read \aleph_0 as "aleph zero" or "aleph naught". The first few cardinals are $0, 1, 2, \ldots, \aleph_0, \aleph_1, \ldots$

If κ is a cardinal number, then we might write $|X| = \kappa$ to mean $|X| = |\kappa|$, i.e., there is a bijection $f : \kappa \to X$. We do this even for finite cardinals, so |X| = k for $k \in \mathbb{N}$ means there is a bijection $f : k \to X$.

We can refine the Well Ordering Theorem to say:

Theorem 6. Every set can be enumerated by a unique cardinal number. (For every set X, there is a unique cardinal κ for which there is a bijection $f : \kappa \to X$.)

The CBS Theorem helps us show two sets have the same cardinality. The following theorem helps us show two sets have different cardinality.

Theorem 7. (Cantor's Theorem) If X is a set, then $|X| < |\mathcal{P}(X)|$.