Definitions and Laws of Arithmetic on \mathbb{N}. With Hints!

Addition

$$
\begin{array}{cl}
m+0 & :=m \\
m+S(n) & :=S(m+n) \tag{RR}
\end{array}
$$

Multiplication

$$
\begin{align*}
m \cdot 0 & :=0 \tag{IC}\\
m \cdot S(n) & :=m \cdot n+m \tag{RR}
\end{align*}
$$

Exponentiation

$$
\begin{align*}
m^{0} & :=1 \tag{IC}\\
m^{S(n)} & :=m^{n} \cdot m
\end{align*}
$$

(Each of these operations is defined by recursion on its second variable.)

Laws of successor. (These should be proved first.)
(a) 0 is not a successor. Every nonzero natural number is the successor of some natural number.

For the first part, $0=\emptyset$ has no elements, while any successor has at least one element $(x \in x \cup\{x\}=S(x))$.

For the second part, the set of natural numbers that are successors of natural numbers, together with 0 , namely the set

$$
\{n \in \mathbb{N} \mid \exists k((k \in \mathbb{N}) \wedge(n=S(k)))\} \cup\{0\}
$$

is an inductive subset of \mathbb{N}, hence equals \mathbb{N}. This implies that every nonzero element $n \in \mathbb{N}$ is the successor of some element $k \in \mathbb{N}$.
(b) Successor is injective. $(S(m)=S(n)$ implies $m=n$.)

If $S(x)=S(y)$, then $x \cup\{x\}=y \cup\{y\}$. Our goal is to prove $x=y$, so let's assume that this is not the case and derive a contradiction.

We have $x \in x \cup\{x\}$, and $x \cup\{x\}=y \cup\{y\}$, so $x \in y \cup\{y\}$. We have assumed that $x \neq y$, so we must have $x \in y$. A similar argument shows that $y \in x$. This contradicts the Axiom of Foundation. (Specifically, the unordered pair $\{x, y\}$ has no \in-minimal element.)

Laws of addition.
(a) $S(m)=m+1$

$$
\begin{aligned}
m+1 & =m+S(0) & & (\mathrm{Defn} \text { of } 1) \\
& =S(m+0) & & ((\mathrm{RR}),+) \\
& =S(m) & & ((\mathrm{IC}),+)
\end{aligned}
$$

(b) (Associative Law) $m+(n+k)=(m+n)+k$

We prove this by induction on k.
(Base Case: $k=0$)

$$
\begin{aligned}
m+(n+0) & =m+n & & ((\mathrm{IC}),+) \\
& =(m+n)+0 & & ((\mathrm{IC}),+)
\end{aligned}
$$

(Inductive Step: Assume true for k, prove true for $S(k)$)

$$
\begin{align*}
m+(n+S(k)) & =m+S(n+k) & & ((\mathrm{RR}),+) \\
& =S(m+(n+k)) & & ((\mathrm{RR}),+) \\
& =S((m+n)+k) & & (\mathrm{IH}) \\
& =(m+n)+S(k) & & ((\mathrm{RR}),+)
\end{align*}
$$

(c) (Unit Law for 0) $m+0=0+m=m$

The fact that $m+0=m$ is part of the definition of addition, so we only need to prove that $0+m=m$. We argue this by induction on m.
(Base Case: $m=0$)

$$
\begin{equation*}
0+0=0 \tag{IC}
\end{equation*}
$$

(Inductive Step: Assume true for m, prove true for $S(m)$)

$$
\begin{align*}
0+S(m) & =S(0+m) \\
& =S(m) \tag{IH}
\end{align*}
$$

(d) (Commutative Law) $m+n=n+m$

We argue this by induction on n.
(Base Case: $n=0$)

$$
m+0=0+m \quad(\operatorname{Part}(\mathrm{c}),+)
$$

Before proceeding to the inductive step, we prove a lemma. It is the " $n=1$ case" of the Commutative Law.
Lemma. $m+1=1+m$.
Proof of Lemma.
(Base Case: $m=0$)

$$
\begin{aligned}
m+1=0+1 & =0+S(0) & & (\text { Defn of } 1) \\
& =S(0+0) & & (\mathrm{RR}),+) \\
& =S(0) & & ((\mathrm{IC}),+) \\
& =1 & & (\text { Defn of } 1) \\
& =1+0=1+m & & ((\mathrm{IC}),+)
\end{aligned}
$$

(Inductive Step: Assume $m+1=1+m$ for some m, prove $S(m)+1=1+S(m)$)

$$
\begin{aligned}
1+S(m) & =S(1+m) & & ((\mathrm{RR}),+) \\
& =S(m+1) & & (\mathrm{IH}) \\
& =S(S(m) & & (\text { Part (a), } S) \\
& =S(m)+1 & & (\text { Part (a) }, S)
\end{aligned}
$$

Now we give the Inductive Step for the proof of (d). We assume that $m+n=n+m$ holds and derive that $m+S(n)=S(n)+m$.

$$
\begin{aligned}
m+S(n) & =S(m+n) & & ((\mathrm{RR}),+) \\
& =S(n+m) & & (\mathrm{IH}) \\
& =n+S(m) & & ((\mathrm{RR}),+) \\
& =n+(m+1) & & (\text { Part (a) }, S) \\
& =n+(1+m) & & \text { (Lemma) } \\
& =(n+1)+m & & (\text { Part }(\mathrm{b}),+) \\
& =S(n)+m & & (\mathrm{RR}),+)
\end{aligned}
$$

(e) (+-Irreducibility of 0$) m+n=0$ implies $m=n=0$.

If $n \neq 0$, then $n=S(k)$ by Part (a) of the Laws of Successor. Then $0=m+n=$ $m+S(k)=S(m+k)$, contradicting that 0 is not a successor. Hence $0=m+n$ forces $n=0$. But now $0=m+n=m+0=m$, so $m=0$ too.
(f) (Cancellation) $m+k=n+k$ implies $m=n$.
(Base Case: $k=0$)

$$
\begin{aligned}
m & =m+0 & & ((\mathrm{IC}),+) \\
& =n+0 & & (\text { assumption }) \\
& =n & & ((\mathrm{IC}),+)
\end{aligned}
$$

(Inductive Step: Assume that $m+k=n+k$ implies $m=n$. Prove that $m+S(k)=$ $n+S(k)$ implies $m=n$.)

Assume that $m+S(k)=n+S(k)$. Then by $((\mathrm{RR}),+)$ we have $S(m+k)=S(n+k)$. But the successor function is injective, by Part (b) of the Laws of Successor. Thus, $m+k=n+k$. Now, by the inductive hypothesis, we derive that $m=n$.

Laws of multiplication (and addition).
(a) (Associative Law) $m \cdot(n \cdot k)=(m \cdot n) \cdot k$
(b) (Unit Law for 1) $m \cdot 1=1 \cdot m=m$
(c) (Commutative Law) $m \cdot n=n \cdot m$
(d) (0 is absorbing) $m \cdot 0=0 \cdot m=0$
(e) (--Irreducibility of 1) $m \cdot n=1$ implies $m=n=1$
(f) (Distributive Law) $m \cdot(n+k)=(m \cdot n)+(m \cdot k)$

Laws of exponentiation (and multiplication and addition).
(a) $m^{0}=1, m^{1}=m, 0^{m}=0$ (if $m>0$), and $1^{m}=1$.
(b) $m^{n+k}=m^{n} \cdot m^{k}$
(c) $(m \cdot n)^{k}=m^{k} \cdot n^{k}$
(d) $\left(m^{n}\right)^{k}=m^{n \cdot k}$

