What is a function?

First-level answer.

A function from A to B is a relation from A to B that satisfies the function rule.
A person who already knows what a relation is and what the function rule is will understand through this definition what a function is. Both relation and function rule are etymologically more primitive than function.

More fully unravelled answer.

(1) (function from A to B)
f is a function from A to B if f is a relation from A to B that satisfies the function rule.
(a) (relation from A to B)

A relation from A to B is a subset of the Cartesian product $A \times B$.
(i) (subset)
X is a subset of Y if $z \in X$ implies $z \in Y$.
(ii) (Cartesian product $A \times B$)

The Cartesian product $A \times B$ is the set

$$
\{x \in \mathcal{P P}(A \cup B) \mid x=(a, b), a \in A, b \in B\} .
$$

Here (a, b) is the ordered pair with 1st coordinate a and 2nd coordinate b. If A and B are sets, then $A \times B$ can be shown to be a set using the Axioms of Separation, Power Set, and Union.
(A) (ordered pair)

The ordered pair (a, b) is the set $\{\{a\},\{a, b\}\}$. If a and b are sets, then (a, b) can be shown to be a set using the Pairing Axiom three times.
(B) (1st coordinate of an ordered pair)

If $(a, b)=\{\{a\},\{a, b\}\}$, then the first coordinate of (a, b) is a. (A theorem was proved to show that this makes sense.)
(C) (2nd coordinate of an ordered pair)

If $(a, b)=\{\{a\},\{a, b\}\}$, then the second coordinate of (a, b) is b.
(b) (function rule)

A relation R from A to B satisfies the function rule if for every $a \in A$ there exists exactly one $b \in B$ such that the ordered pair (a, b) is an element of R.
(i) (ordered pair)

See (1)(a)(ii)(A) above.

