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Abstract

We show that every idempotent simple algebra which has a skew congruence in a
power either has an absorbing element or is a subreduct of an affine module. We refine
this result for idempotent algebras which have no nontrivial proper subalgebras. One
corollary we obtain is a new proof of Á. Szendrei’s classification theorem for minimal
locally finite idempotent varieties. We partially extend this classification to non-locally
finite varieties. Another corollary is a complete classification of all minimal varieties
of modes.

1 Introduction

An operation f(x1, . . . , xn) on a set U is said to be idempotent if f(u, u, . . . , u) = u is true
of any u ∈ U . An algebra is idempotent if each of its fundamental operations is idempotent.
Equivalently, A is idempotent if every constant function c : A→ A is an endomorphism. As
is usual, we say that A is simple if it has exactly two congruences. In our paper we prove
the following theorem concerning idempotent simple algebras.

THEOREM 1.1 If A is an idempotent simple algebra, then exactly one of the following
conditions is true.

(a) A has a unique absorbing element.

(b) A is a subalgebra of a simple reduct of a module.

(c) Every finite power of A is skew-free.

We call 0 ∈ A an absorbing element for A if whenever t(x, ȳ) is an (n + 1)-ary term
operation of A such that tA depends on x and ā ∈ An, then tA(0, ā) = 0. We say that
An is skew-free if the only congruences on An are the product congruences. Since A is
simple in the above theorem, the product congruences on An are just the canonical factor
congruences. Thus, the statement that “every finite power of A is skew-free” is exactly the
claim that ConAn ∼= 2n for each n < ω.
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The class of simple algebras of type (c) includes the class of all idempotent functionally
complete algebras and this class is interdefinable with the class of all idempotent algebras.
Hence the simple algebras of type (c) resist classification. A similar statement may be
made about the simple algebras of type (a). Therefore, the theorem is properly viewed
as a criterion for an idempotent simple algebra to be a subreduct of a module. For, if an
idempotent simple algebra has a skew congruence in a power but has no absorbing element,
then it is a subreduct of a module.

It is plausible that our theorem will lead to a complete classification of all minimal
varieties of idempotent algebras. By Magari’s Theorem, any variety contains a simple algebra
(see [8]); hence a minimal idempotent variety is generated by an algebra of type (a), (b) or
(c). It is not hard to prove that any minimal variety containing a simple algebra of type (a)
is equivalent to the variety of semilattices. Any minimal variety containing a simple algebra
of type (b) is equivalent to the variety of sets or to a variety of affine modules over a simple
ring. (In this paper, all rings have a unit element, an affine R-module is the idempotent
reduct of an R-module and an affine vector space is the idempotent reduct of a vector
space.) The minimal varieties containing only simple algebras of type (c) are difficult to
analyze. The only examples that we know are congruence distributive. If such a variety is
not congruence distributive, it cannot be locally finite.

The entropic law for an algebra A is the statement that for f ∈ ClomA and g ∈ ClonA
and an m× n array of elements of A,




u1
1 u2

1 · · · un1
u1

2 u2
2 · · ·

...
...

. . .

u1
m u2

m unm



,

we have f(g(ūi)) = g(f(ūj)). Idempotent entropic algebras are called modes (see [11]). We
prove that there is no simple mode of type (c) and that the only one of type (a), up to
equivalence, is the 2-element semilattice. This leads to a good description of simple modes
and a classification of all minimal varieties of modes. Up to equivalence, the minimal varieties
are: the variety of semilattices, the variety of sets and any variety of affine vector spaces.

Our notation for congruences in powers shall roughly follow [2]. The projection homo-
morphism from Aκ onto a sequence of coordinates σ will be denoted πσ. For example, in
A3 we have π01((a, b, c)) = (a, b) while π10((a, b, c)) = (b, a). We will write ησ for the kernel
of πσ and write ασ for π−1

σ (α) where α is a congruence on Aσ. We write η′σ to denote the
canonical factor congruence which complements ησ. We prefer to write 0 in place of η01···(n−1)

and 1 in place of η∅. A congruence on An of the form

α0 ∧ β1 ∧ · · · ∧ νn−1

will be called a product congruence. A congruence which is not a product congruence is
a skew congruence. Hence a power of A is skew-free iff it has no skew congruences.

2



2 Skew Congruences in Powers

In this section we show that if A is a simple idempotent algebra which has a skew congruence
in a finite power, then A has a unique absorbing element or else A is abelian. We shall find
it convenient to restrict our arguments to algebras that have at least three elements. The
reason for this is that the 2-element set with no operations is an algebra which is abelian,
but has an absorbing element. In fact, each of the two elements of the 2-element set is an
absorbing element, so this algebra does not contradict Theorem 1.1; it belongs in class (b).
But the fact that it has an absorbing element and is at the same time abelian makes it
difficult to separate classes (a) and (b) of Theorem 1.1 when |A| = 2. So, we now observe
simply that Theorem 1.1 can be established by hand in the 2-element case and we leave it to
the reader to do this. Alternately, one can refer to Post’s description of 2-element algebras in
[10] or to J. Berman’s simplification of Post’s argument in [1]. From these sources one finds
that a 2-element idempotent algebra must be, up to term equivalence, one of the following:

(i) a semilattice,

(ii) a set,

(iii) an affine vector space or

(iv) a member of a congruence distributive variety.

A semilattice belongs only to class (a) of Theorem 1.1, a set or an affine vector space belongs
only to class (b) of Theorem 1.1 and a member of a congruence distributive variety belongs
only to class (c) of Theorem 1.1.

Here is how we shall use our hypothesis that |A| > 2. We shall need to know that any
idempotent simple algebra of cardinality greater than two (i) has at most one absorbing
element and (ii) is not essentially unary. We prove this now.

LEMMA 2.1 If A is an idempotent simple algebra, then the following are equivalent.

(i) A has more than one absorbing element.

(ii) A is essentially unary.

(iii) A is term equivalent to the 2-element set.

Proof: We shall prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Assume (i) and deny (ii). Then
A has distinct absorbing elements 0 and 1 and a term t(x, y, z̄) which depends on at least x
and y in A. Since 0 and 1 are absorbing we have

0 = tA(0, 1, 1, . . . , 1) = 1,

a contradiction.
Now assume (ii). If s(x, ȳ) is a term that depends on x in A, then since A is essentially

unary and idempotent we get

sA(x, y0, . . . , yk) = sA(x, x, . . . , x) = x.
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Hence any term depending on a variable is projection onto that variable. It is impossible for
A to have a term depending on no variables, since A is idempotent. Hence every term of A
is projection onto some variable. (iii) follows from this and the simplicity of A.

If (iii) holds, then each of the elements of A is an absorbing element. Hence (i) holds.
This completes the lemma. 2

Henceforth we assume that |A| > 2.

Definition 2.2 If α and β are congruences on A, then α centralizes β if whenever p(x, ȳ) ∈
Poln+1A and (u, v),∈ α, (ai, bi) ∈ β the implication

p(u, ā) = p(u, b̄)⇒ p(v, ā) = p(v, b̄)

holds. We denote the fact that α centralizes β by writing C(α, β). An algebra A is said to
be abelian if C(1A, 1A).

We remark that the implication described in this definition is called the α, β-term con-
dition. When α = β = 1, then it is simply called the term condition. “A satisfies the
term condition” is synonymous with “A is abelian.” For additional properties of abelian
congruences and algebras, see Chapter 3 of [4]. Here are a few facts we shall need.

(i) An algebra A is abelian if and only if the diagonal of A2 is a congruence class.

(ii) There is always a largest congruence α which centralizes a given β. This congruence
is called the centralizer of β and it is denoted (0 : β).

(iii) It is the case that α ∧ β = 0⇒ C(α, β)⇔ α ≤ (0 : β).

(iv) If B is a subalgebra of A and α and β are congruences on A, then C(α, β) ⇒
C(α|B, β|B).

All of the properties of C(x, y) mentioned in this paragraph have easy proofs.

We begin with a first approximation to the main theorem.

THEOREM 2.3 If A is an idempotent simple algebra, then exactly one of the following
is true.

(a) A has a unique absorbing element.

(b) A is abelian.

(c) Every finite power of A is skew-free.
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Proof: The theorem is true when |A| = 2, so we focus only on the case where |A| > 2.
First we argue that A belongs to at least one of the classes (a), (b), or (c) described in

the theorem. Later we explain why A cannot belong to two different classes. Assume that
A is not in class (c). Then for some m > 1 there is a skew-congruence on Am. We assume
that m is chosen minimally for this. Let θ be a skew congruence of Am. We may choose
i so that ηi 6≥ θ since θ 6= 0. By permuting coordinates if necessary, we may assume that
i = 0. If θ ≥ η′0, then θ/η′0 is a skew congruence on Am/η′0

∼= Am−1. This contradicts the
minimality of m. Hence θ 6≥ η′0. We shall split our argument into two cases. Case 1: Am has
a congruence δ such that 0 < δ < η′0. Case 2: Am has no congruence δ such that 0 < δ < η′0.

Proof for Case 1: Assume that Am has a congruence δ such that 0 < δ < η′0. We
shall argue that A has an absorbing element. Each η′0-class of Am is a subalgebra of Am

since A is idempotent. Furthermore, each of these subalgebras is isomorphic to A via the
restriction of the first coordinate projection. If B = A×{u}, u ∈ Am−1, is such a subalgebra,
then δ|B is a congruence on B. But, as B ∼= A, B is simple. Hence δ|B = 0B or 1B. Define

U = {u ∈ Am−1 | δ|A×{u} = 1A×{u}}.

We cannot have U = ∅, for this is equivalent to δ = 0. We cannot have U = Am−1, for this is
equivalent to δ = η′i. Hence there is a u ∈ U and a v ∈ A−U . If u = (b2, . . . , bm−1) and v =
(c2, . . . , cm−1), then by sequentially changing each bj to the value cj in these (m− 1)-tuples
we find that for some i we must have

(c2, . . . , ci−1, bi, bi+1, . . . , bm−1) ∈ U and (c2, . . . , ci−1, ci, bi+1, . . . , bm−1) 6∈ U.

Consider the subalgebra of C ≤ An which has universe

A× {c2} × · · · × {ci−1} × A× {bi+1} × · · · × {bm−1}.

Note that C ∼= A2 via projection onto coordinates 0 and i. Furthermore, δ|C is a congruence
which has

A× {c2} × · · · × {ci−1} × {bi} × {bi+1} × · · · × {bm−1}
as a congruence class, but not

A× {c2} × · · · × {ci−1} × {ci} × {bi+1} × · · · × {bm−1}.

It follows that
0C < δ|C < η′0|C.

From the isomorphism C ∼= A2 we deduce that A2 has a skew congruence which lies below a
projection kernel. By the minimality assumption on m, it must be that m = 2. We proceed
with the knowledge that m = 2 retaining the definitions of δ and U from above. Note that
U ⊆ Am−1 = A now.

Claim. If t(x, ȳ) is an (n + 1)-ary term which depends on x in A and s̄ ∈ An, then
tA(U, s̄) ⊆ U .

Proof of Claim: Assume otherwise that t(x, ȳ) depends on x in A and for some u ∈ U
we have tA(u, s̄) = v 6∈ U . Since tA(x, ȳ) depends on x, there is some r̄ ∈ An such that
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tA(x, r̄) is non-constant. Recall that u ∈ U means precisely that A × {u} is a nontrivial
δ-class. Applying the polynomial tA×A(x, (ri, si)) to this class, we obtain that the set

tA×A(A× {u}, (ri, si)) = tA(A, r̄)× {v}

is a nontrivial subset contained in A × {v}. Since this subset is a polynomial image of a
δ-class, δ restricts nontrivially to A × {v}. As argued above, this implies that A× {v} is a
δ-class. But this forces v ∈ U which is contrary to our assumption. This proves the Claim.

The Claim just proven implies that U is a class of a congruence on A. Since we have
shown in the first paragraph of the argument for Case 1 that U 6= Am−1 = A, we cannot have
U a class of the universal congruence, 1. Since A is simple, U is a 0-class. Thus U = {0} for
some element 0 ∈ A. By the Claim, if t(x, ȳ) depends on x in A and s̄ ∈ An, then tA(0, s̄)
= 0. This is precisely what it means for 0 to be an absorbing element for A. By Lemma
2.1 and our assumption that |A| > 2, 0 is the unique absorbing element for A. Hence, any
algebra in Case 1 has a unique absorbing element and therefore belongs to class of algebras
of type (a) of the theorem.

Proof for Case 2: Now assume that Am has no congruence δ such that 0 < δ < η′0.
Since θ 6≥ η′0, we have θ ∧ η′0 < η′0. Because we are in Case 2, this means that θ ∧ η′0 = 0.
Hence C(θ, η′0) and so θ ≤ (0 : η′0). As η0 and η′0 are complements, we also have η0 ∧ η′0 = 0
and so C(η0, η

′
0) also holds. Thus η0 ≤ (0 : η′0). Altogether this implies that θ∨η0 ≤ (0 : η′0).

But η0 6≥ θ, by choice, and η0 ≺ 1 since A is simple. Hence θ ∨ η0 = 1 and so (0 : η′0) = 1
and it follows that C(1, η′0) holds. If B = A×{u}, u ∈ Am−1, then B is a subalgebra of Am

isomorphic to A as we explained in the argument for Case 1. Now, restricting congruences
to B we get that C(1A|B, η′0|B) holds. But

(1A)|B = 1B = η′0|B,

so C(1B, 1B) holds and B is abelian. Since A is isomorphic to B, A is abelian, too.

Our arguments have shown that a skew congruence below some η ′0 implies the existence
of an absorbing element for A. If a finite power of A has a skew congruence, but has no
skew congruence below any η′0, then A is abelian. Hence any idempotent simple algebra A
must belong to at least one of the classes described in the theorem. Now we show that no
idempotent simple algebra belongs to two classes.

If A has an absorbing element 0, then A2 has an ideal congruence which is skew. That
is, for I = A× {0} it is the case that θ = Cg(I × I) has I as its only nontrivial congruence
class. This congruence satisfies 0 < θ < η1 and is therefore skew. If A is abelian, then A2

has a congruence which has the diagonal D = {(x, x)|x ∈ A} as a congruence class. This
congruence is clearly distinct from the product congruences 0, η0, η1 and 1, so it is skew.
Hence any algebra in classes (a) or (b) cannot belong to class (c). To show that classes (a)
and (b) are disjoint, assume that A is abelian and has an absorbing element 0 ∈ A. Since
we have assumed that |A| > 2 we can also assume, by Lemma 2.1, that A is not essentially
unary. Let t(x, y, z̄) be a term depending on x and y in A and choose a ∈ A− {0}. 0 is an
absorbing element, so

tA(0, 0, a, . . . , a) = 0 = tA(0, a, a, . . . , a).
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Changing the underlined occurrences of 0 to a we obtain

tA(a, 0, a, . . . , a) = 0 6= a = tA(a, a, a, . . . , a).

This is a failure of the term condition. It contradicts our assumption that A is abelian. We
conclude that classes (a) and (b) of the theorem are disjoint. This completes the proof of
the theorem. 2

COROLLARY 2.4 If A is an idempotent simple algebra and A2 is skew-free, then every
finite power of A is skew-free.

Proof: Theorem 2.3 shows that if some finite power of A has a skew congruence, then
A has an absorbing element or is abelian. In the former case, A2 has skew congruences as-
sociated with ideal congruences while in the latter case A2 has a skew congruence associated
with the “diagonal congruence”. Hence if some finite power of A has a skew congruence,
then A2 has a skew congruence. 2

3 An Affine Module Embedding

In [3], C. Herrmann proves that every abelian algebra in a congruence modular variety
is affine. This implies that an idempotent abelian algebra which generates a congruence
modular variety is an affine module. Starting with an abelian algebra, Herrmann constructs
a 1-1 function into an affine algebra in the first half of his paper. In the second half, he proves
that this function is an isotopy. For idempotent algebras, his function is an isomorphism.
Herrmann’s proof depends quite heavily on congruence modularity, but we shall see in this
section that it is possible to filter out much of this dependency in the first half of his proof.
In the few remaining places where it seems impossible to avoid at least some modularity
requirement, we shall see that simplicity and idempotence can substitute for modularity. In
this way we will have modified the first half of his proof to produce an embedding into an
affine module. Hence we prove that any idempotent simple algebra which is abelian is a
subreduct of an affine module.

For this section, A denotes a simple, idempotent, abelian algebra of more than two
elements. We single out a part of the proof of Theorem 2.3 that we shall need later.

LEMMA 3.1 If ηi, i = 0, 1 are the kernels of the coordinate projections of A2, then 0 ≺ ηi.

Proof: In the proof of Case 1 of Theorem 2.3 we show that when |A| > 2 and there is a
congruence 0 < δ < ηi, then A has a unique absorbing element. We show later in the proof
of Theorem 2.3 that such an algebra cannot be abelian. 2

LEMMA 3.2 There is a largest proper congruence ∆ on A × A which contains D =
{(x, x) | x ∈ A} in a ∆-class. This ∆ has D as a congruence class and satisfies ∆η0 = ∆η1 =
0. Furthermore, B = (A×A)/∆ is simple and an extension of A.
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Proof: Saying that D is equal to a class of some congruence is just another way of saying
that A is abelian. Hence, there is a proper congruence which contains D in a congruence
class. Now suppose that there is some congruence θ which properly contains D in a θ-class.
Since the containment is proper, we can find a 6= b in A such that (a, b) θ (a, a) and so
θη0 > 0. By Lemma 3.1 and the fact that A is simple, each ηi is a coatom and also an atom
in ConA2. It follows θ = η0 or else θ = 1. Since D ×D ⊆ θ and D ×D 6⊆ η0, we have θ =
1. Hence for any proper congruence γ on A×A we have that γ contains D in a γ-class iff
D is a γ-class.

Let Σ be the set of all congruences on A×A which have D as a congruence class. Define
∆ to equal the join of all members of Σ. Clearly ∆ has D as a congruence class, so ∆ is the
largest element in Σ. Since ∆ is the largest congruence which has D as a congruence class
and no proper congruence contains D in a congruence class we have ∆ ≺ 1 in Con A×A.
Hence B = (A × A)/∆ is simple. Since ηi 6≤ ∆, clearly, and each ηi is an atom, we must
have

∆η0 = ∆η1 = 0.

In this paragraph we have justified all the claims of the lemma except that we haven’t yet
shown that B is an extension of A.

To show that A embeds in B, choose an element 0 ∈ A and consider the function A→ B
defined by x 7→ (x, 0)/∆. This function is a homomorphism since A is idempotent and it is
an embedding since ∆η0 = 0. 2

We shall think of the fourth power of A as 2 × 2 matrices of elements of A and write
A2×2 to denote this. We order the entries as follows:

[
0 1
2 3

]

According to our conventions this means that

π01

([
a b
c d

])
= (a, b) while π10

([
a b
c d

])
= (b, a).

Thus ∆01, for example, is the congruence on A2×2 which contains all pairs of 2× 2 matrices
of the form 〈[

a b
c d

]
,

[
e f
g h

]〉
, 〈(a, b), (e, f)〉 ∈ ∆.

LEMMA 3.3 For ∆ as described in Lemma 3.2, the following properties hold.

(i) (x, y) ∆ (u, v)⇔ (y, x) ∆ (v, u).

(ii) (x, y) ∆ (u, v)⇔ (x, u) ∆ (y, v).

Proof: Let † denote the canonical involutory automorphism of A2. If one applies †
coordinatewise to A2×2 = (A2)2, then one obtains an automorphism of A2×2 which permutes
the subalgebras of A2×2. This automorphism permutes the congruences of A2 considered
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as subalgebras. We shall use † to denote both the described automorphism of A2 and the
induced permutation of congruences of A2.

Clearly ∆† is a congruence on A2 which contains the diagonal as a congruence class. It
follows that ∆† ⊆ ∆ by Lemma 3.2. But now applying † to both sides of this inclusion we
get ∆†† ⊆ ∆† and therefore ∆ = ∆†† ⊆ ∆† ⊆ ∆. Hence ∆ = ∆† which means precisely that
(i) holds.

Now let ‡ denote the automorphism of A2×2 which may be described as “transposing
matrices” or equivalently as “switching coordinates 1 and 2”. Viewing ∆ as a subset of
A2×2, part (ii) of the lemma is the statement that ∆‡ = ∆. By the same argument we used
in the last paragraph, to prove that ∆‡ = ∆ it will suffice for us to prove that ∆‡ ⊆ ∆.

∆‡ is a subalgebra of A2×2 since ∆ is. Since ∆ satisfies part (i) of the lemma, ∆‡ is a
symmetric relation. Since D ×D ⊆ ∆, we get that ∆‡ is reflexive and since ∆ is reflexive,
we get D × D ⊆ ∆‡. Hence ∆‡ is a reflexive, symmetric, compatible relation on A2 which
contains D × D. Let θ denote the transitive closure of ∆‡. θ is a congruence on A2 which
contains D ×D and also contains ∆‡. Since ∆η0 = 0, we get

(a, b) ∆ (a, c)⇒ b = c.

Hence
(a, a) ∆‡ (b, c)⇒ b = c.

From this it follows that
(a, a) θ (b, c)⇒ b = c.

Thus, θ is a proper congruence on A2 and D is a θ-class. By the maximality of ∆, we get
that ∆‡ ⊆ θ ⊆ ∆ which implies that ∆‡ = ∆. Thus (ii) holds. 2

LEMMA 3.4 The following hold.

I. A2/∆ is abelian.

II. If χ is a coatom of Con A2×2, then the following conditions are equivalent.

(i) ∆01∆23 ≤ χ and χ contains some pair of the form

〈M,N〉 =

〈[
x y
x y

]
,

[
u z
u z

]〉

where 〈(x, y), (u, z)〉 6∈ ∆.

(ii) ∆02∆13 ≤ χ and χ contains some pair of the form

〈P,Q〉 =

〈[
x x
y y

]
,

[
u u
z z

]〉

where 〈(x, y), (u, z)〉 6∈ ∆.

(iii) ∆01∆23 + ∆02∆13 ≤ χ.
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III. There is a unique congruence χ on A2×2 which is a coatom of Con A2×2 and satisfies
the equivalent conditions in part II.

Proof: If B = A2/∆, then B is simple by Lemma 3.2 and B×B is naturally isomorphic
to A2×2/(∆01∆23). Throughout this proof we shall identify B × B and A2×2/(∆01∆23).
Choose any pair 〈M,N〉 as described in items II(ii) above. Define

ψ = [(∆01∆23) + Cg(M,N)]/(∆01∆23)

and let θ = (∆01∆23 + ∆02∆13)/(∆01∆23). Since 〈M,N〉 ∈ ∆02∆13 we have ψ ≤ θ. We
shall prove that ψ ≤ θ < 1 in Con B2 and that there is a largest proper congruence in the
interval [ψ, 1] of Con B2. Together, these two facts imply that the largest proper congruence
above ψ is also the largest proper congruence above θ. This will prove that in Con A2×2,
a coatom satisfies II(i) if and only if it satisfies II(iii). By symmetry, we will get that a
coatom satisfies II(ii) if and only if it satisfies II(iii). This will prove II. Along the way
we will establish parts I and III of the lemma.

If E = {(x, x)|x ∈ B} is the diagonal of B2, then the congruence ψ on B2 contains E×E.
The reason for this is that ψ contains the pair

〈M/∆01∆23, N/∆01∆23〉 =

〈(
(x y)/∆
(x y)/∆

)
,

(
(u v)/∆
(u v)/∆

)〉

which is a pair of elements of E. Our assumption that 〈(x, y), (u, z)〉 6∈ ∆ means that this
pair is a pair of distinct elements of E. The fact that the diagonal subalgebra E ≤ B2 is
simple (since it is isomorphic to B) together with ψ|E 6= 0 implies that E × E ⊆ ψ ≤ θ.

Next we prove that in Con B2 we have θ < 1. This is equivalent to the claim that

∆01∆23 + ∆02∆13 < 1

in Con A2×2. We prove this by exhibiting a proper subset of A2×2 which is a union of
(∆01∆23 + ∆02∆13)-classes. That subset is ∆ ⊆ A2×2. ∆ is a proper subset of A2×2 since
∆ < 1 in Con A2. We first argue that ∆, as a subset of A2×2, is a union of ∆01∆23-
classes. Applying the automorphism ‡ to this statement then yields that ∆‡ is a union of
∆02∆13-classes. But ∆ = ∆‡ by Lemma 3.3 (ii). Hence it will follow that ∆ is a union of
(∆01∆23 + ∆02∆13)-classes.

To see that ∆ is a union of ∆01∆23-classes, take matrices

R =

[
a b
c d

]
, S =

[
e f
g h

]

such that R ∈ ∆ and 〈R, S〉 ∈ ∆01∆23. The fact that R ∈ ∆ means precisely that (a, b) ≡∆

(c, d). The fact that 〈R, S〉 ∈ ∆01∆23 means precisely that (a, b) ≡∆ (e, f) and (c, d) ≡∆

(g, h). By transitivity, we get (e, f) ≡∆ (g, h), so S ∈ ∆. As explained in the last paragraph,
this proves that ∆01∆23 + ∆02∆13 < 1 in Con A2×2 and so θ < 1 in Con B2.

We now prove that in Con B2 we have θη0 = θη1 = 0. Suppose instead that for some
b 6= c we have 〈(a, b), (a, c)〉 ∈ θη0. Then θ restricts nontrivially to the simple subalgebra F =
{a}×B. Hence F×F ⊆ θ. But now for every x, y ∈ B−{a} we have (a, x) ≡θ (a, a) ≡θ (x, x)
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and (a, y) ≡θ (a, a) ≡θ (y, y), so the same type of argument shows that G × G,H ×H ⊆ θ
when G = B × {x} and H = B × {y} if x 6= a 6= y. Using the fact that |B| ≥ |A| > 2,
we choose x, y ∈ B so that |{a, x, y}| = 3 and we get that θ restricts nontrivially to every
subalgebra of the form {u} × B since θ contains 〈(u, x), (u, y)〉. This implies that θ = 1
which we know to be false. Our conclusion is that θη0 = 0. Similarly θη1 = 0.

We have shown that B2 has congruences ψ and θ where E ×E ⊆ ψ ≤ θ < 1 for E equal
to the diagonal of B2. We have also shown that θη0 = θη1 = 0. These conditions imply that
E is a θ-class (and also a ψ-class), so B is abelian. This establishes part I of the lemma.
Applying Lemma 3.2 to B we see that there is a largest proper congruence ∆B on B2 which
contains E in a congruence class. Lemma 3.2 proves that ∆B ≺ 1. We have ψ ≤ θ ≤ ∆B ≺ 1
since θ is a proper congruence which contains E in a congruence class. ∆B is the largest
proper congruence in Con B2 which has E as a congruence class, so ∆B is the largest proper
congruence above ψ and is also the largest proper congruence above θ. Hence a coatom in
Con B2 is above ψ if and only if it is above θ. This holds for the coimages of ψ and θ in
Con A2×2, so a coatom satisfies condition II(i) if and only if it satisfies condition II(iii).
By symmetry we get that II holds.

For III, our only choice is to take χ to be the coimage of ∆B. From the equivalence of
the conditions in II, it doesn’t matter if we take this coimage with respect to the natural
map

A2×2 → A2×2/(∆01∆23) ∼= B2

or with respect to the natural map

A2×2 → A2×2/(∆02∆13) ∼= B2.

In either case we get the largest proper congruence of A2×2 above ∆01∆23 + ∆02∆13. 2

Now we define a sequence of algebras and embeddings between them.

(i) Set A0 = A and choose 00 ∈ A0.

(ii) Let An+1 = (An ×An)/∆An, 0n+1 = (0n, 0n)/∆An.

(iii) Let δn : An → A2
n : x 7→ (x, 0n).

(iv) Let tn : A2
n → An+1 : (x, y) 7→ (x, y)/∆An. (The canonical map.)

(v) Let εn = tn ◦ δn : An → An+1. Let εij = εj−1 ◦ · · · ◦ εi+1 ◦ εi if j > i and let εii = idAi .

LEMMA 3.5 If V = V(A), then the following hold.

(i) An ∈ V for all n.

(ii) εn : An → An+1 is an embedding for all n.

(iii) Each An is simple and abelian.

11



(iv) For all a, b, c, d ∈ An,

tn+1(tn(a, b), tn(c, d)) = tn+1(tn(a, c), tn(b, d)).

Proof: Item (i) is immediate from the fact that V = HSP(V). Item (ii) follows from
induction based on our proof in Lemma 3.2 that the function

A→ (A×A)/∆ : x 7→ (x, 0)/∆

is an embedding. Item (iii) follows by induction from our proofs that (A×A)/∆ is simple
(Lemma 3.2) and abelian (Lemma 3.4).

Item (iv) is the statement that the following diagram commutes:

A2×2
n

tn−→ A2
n+1

tn ↓ tn+1 ↓
A2
n+1

tn+1−→ An+2

The map across the top is tn applied to the rows of a matrix in A2×2
n . The map on the left is

tn applied to the columns of a matrix in A2×2
n . Since the composite maps in both directions

are the canonical maps, it suffices to prove that they have the same kernel. But the kernels
of these two composite maps are each coatoms of Con A2×2 since An+2 is simple. The map
across the top and down the right side has a kernel which satisfies condition II(i) of Lemma
3.4 while the map down the left side and across the bottom has a kernel which satisfies II(ii)
of Lemma 3.4. The result of Lemma 3.4 proves that these kernels are the same. 2

We now define the direct limit Â in V of the system {εn : An → An+1} in a concrete
way. Let X denote the set of partial functions from the natural numbers into

⋃
An which

satisfy the following conditions.

1. If a ∈ X and n ∈ dom a, then a(n) ∈ An.

2. If a ∈ X and n ∈ dom a, then n + 1 ∈ dom a and a(n+ 1) = εn(a(n)).

Let Θ be the equivalence relation on X defined by a ≡Θ b if a(n) = b(n) for all n ∈
(dom a∩ dom b) (equivalently, for some n ∈ (dom a∩ dom b)). The underlying set of Â will
be taken to be Â = X/Θ.

If f is an m-ary V-operation, then there is an induced operation f Â on Â which we define
as follows. For a0, . . . , am−1 ∈ X, let f Â(a0/Θ, . . . , am−1/Θ) be the Θ-class of the partial
function whose domain is

⋂
dom ai and which is defined by

f Â(a0, . . . , am−1)(n)
def
= fAn(a0(n), . . . , am−1(n))

for n ∈ ⋂ dom ai. Now we make some further definitions.

(i) Let im : Am → Â be the function which assigns to each a ∈ Am the Θ-class of the
partial function im(a) defined by im(a)(n) = εmn(a) whenever n ≥ m.

(ii) Let 0 ∈ Â to be the Θ-class of the everywhere-defined function 0(n) = 0n.
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(iii) Define t : Â2 → Â as follows. For R, S ∈ Â choose r ∈ R and s ∈ S. Let t be
the function that assigns to the pair (R, S) the Θ-class of the partial function t(R, S)
defined by t(R, S)(n+ 1) = tn(r(n), s(n)) whenever n ∈ (dom r ∩ dom s).

LEMMA 3.6 If V = V(A), then the following hold.

(i) If f is a V-operation, then f Â is a well-defined operation on Â.

(ii) in : An → Â is an embedding for all n and Â =
⋃
in(An).

(iii) Â ∈ V.

(iv) Â is simple and abelian.

(v) 0 is a well-defined element of Â and t is a well-defined binary operation on Â and the
following equations hold:

(a) t(x, 0) = x.

(b) t(x, x) = 0.

(c) t(t(x, y), t(z, u)) = t(t(x, z), t(y, u)).

(vi) t : Â2 → Â is a homomorphism.

Proof: To show that f Â is a well-defined function, we need to show that if ai ∈ X,
i < m, then the partial function defined by

f Â(a0, . . . , am−1)(n) = fAn(a0(n), . . . , am−1(n))

is also in X and that if ai ≡Θ a′i, i < m, then f Â(ā) ≡Θ f Â(ā′). The first part requires
showing that

εn(fAn(a0(n), . . . , am−1(n))) = fAn+1(a0(n + 1), . . . , am−1(n+ 1))
= fAn+1(εn(a0(n)), . . . , εn(am−1(n))).

This is just the statement that εn is a homomorphism which is immediate from its definition.
The second part follows immediately, since ai ≡Θ a′i means ai(m) = a′i(m) wherever they are

both defined, so f Â(ā)(m) = f Â(ā′)(m) wherever they are both defined.
To show (ii) we first need to show that for a ∈ Am the partial function im(a) is in X.

This means that we must show that εn(im(a)(n)) = im(a)(n + 1) for n ≥ m. This just
requires observing that εn ◦ εmn(a) = εmn+1(a). Now we must show that each im is a 1-1
homomorphism. To see that im is 1-1, it suffices to note that if a 6= b in Am, then im(a)(m)
= a 6= b = im(b)(m), so im(a) and im(b) differ on a natural number that belongs to their
common domain. Thus, im(a) 6≡Θ im(b). Checking that im is a homomorphism reduces to
checking that

im(fAm(a0, . . . , ak))(m) = fAm(im(a0)(m), . . . , im(ak)(m)).
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Clearly both sides equal fAm(a0, . . . , ak). To finish (ii) we must show that Â =
⋃
in(An).

For this it is enough to show that for each a ∈ X there is an n < ω and an element b ∈ An

such that in(b)(n) = a(n). (Then we will have in(b) = a.) We may simply choose b = a(n).
To show that Â ∈ V it suffices to observe that a variety fails to contain Â if and only if

it fails to contain some finitely generated subalgebra of Â. By (ii), Â =
⋃
An, so any such

variety will also fail to contain some An. V contains all An, so V contains Â.
Statement (iv) follows from (ii), since any algebra which is the nested union of simple

or abelian subalgebras has the same properties. (The union Â =
⋃
An is nested since in =

in+1 ◦ εn. Hence the image of in is contained in the image of in+1.)
0 is a well-defined element of Â, since εn(0n) = tn(0n, 0n) = 0n+1. To see that t is well-

defined, we must first show that for R, S ∈ Â and r ∈ R and s ∈ S we have t(R, S) ∈ X
where t(R, S)(n+1) = tn(r(n), s(n)) whenever n ∈ (dom r∩dom s). Then we need to verify
that the Θ-class of t(R, S) doesn’t depend on our choice of r and s. The first part follows
from Lemma 3.5 (iv) as we show here.

εn+1(t(R, S)(n+ 1)) = εn+1(tn(r(n), s(n)))
= tn+1 ◦ δn+1 ◦ tn(r(n), s(n))
= tn+1(tn(r(n), s(n)), 0n+1)
= tn+1(tn(r(n), s(n)), tn(0n, 0n))
= tn+1(tn(r(n), 0n), tn(s(n), 0n))
= tn+1(tn(δn(r(n))), tn(δn(s(n)))
= tn+1(εn(r(n)), εn(s(n)))
= tn+1(r(n+ 1), s(n+ 1))
= t(R, S)(n+ 2).

For the second part of this verification, it is clear that if r and r′ agree on their common
domain and s and s′ agree on their common domain, then tn(r(n), s(n)) = tn(r′(n), s′(n))
whenever n belongs to the domain of r, r′, s and s′.

To show that t(x, 0) = x, choose R ∈ X and r ∈ R. We must show that tn(r(n), 0n) =
r(n+ 1) for some (equivalently all) n ∈ dom r. This is accomplished with

tn(r(n), 0n) = tn(δn(r(n)))
= εn(r(n))
= r(n+ 1).

To show that t(x, x) = 0, choose R ∈ X and r ∈ R. We must show that tn(r(n), r(n)) =
0n+1 for some n ∈ dom r. We show this with: tn(r(n), r(n)) = tn(0n, 0n) = 0n+1. Here we
used that fact that (r(n), r(n)) ≡∆An (0n, 0n).

To establish the equation t(t(x, y), t(z, u)) = t(t(x, z), t(y, u)) choose P,Q,R, S ∈ X and
p ∈ P , q ∈ Q, r ∈ R and s ∈ S. Then we must show that

tn+1(tn(p(n), q(n)), tn(r(n), s(n))) = tn+1(tn(p(n), r(n)), tn(q(n), s(n)))

for some n where p, q, r and s are all defined. This equation follows from Lemma 3.5 (iv).
To show that t : Â2 → Â is a homomorphism, we must show that if f is an m-ary

fundamental operation, then t and f commute on any 2×m matrix of elements of Â. This
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verification reduces to showing that each tn : A2
n → An+1 is a homomorphism. But by

definition tn is the canonical homomorphism between these two algebras. 2

LEMMA 3.7 If p(x, y, z) = t(x, t(y, z)), then

(i) p(x, y, y) = x and p(x, x, y) = y.

(ii) p commutes with itself and with all the operations of Â.

(iii) 〈Â; p(x, y, z)〉 is an idempotent, abelian, simple algebra.

Proof: For (i), note that p(x, y, y) = t(x, t(y, y)) = t(x, 0) = x by Lemma 3.6 (v)(a) and
(v)(b). Using Lemma 3.6 (v)(c) as well, we get

p(x, x, y) = t(x, t(x, y))
= t(t(x, 0), t(x, y))
= t(t(x, x), t(0, y))
= t(0, t(0, y))
= t(t(y, y), t(0, y))
= t(t(y, 0), t(y, y))
= t(y, 0) = y.

Property (ii) follows from the fact that p is in the clone on Â generated by t and t has
the properties mentioned in (ii) by Lemma 3.6.

Since Â is idempotent and simple and p(x, y, z) is idempotent, the expansion 〈Â; p(x, y, z)〉
is an idempotent simple algebra. This expansion generates a congruence permutable variety
by part (i) of the lemma. Part (ii) proves that p(x, y, z) commutes with all the operations
of 〈Â; p(x, y, z)〉, so by Proposition 5.7 of [2] we get that 〈Â; p(x, y, z)〉 is abelian. 2

THEOREM 3.8 If A is a simple, idempotent, abelian algebra, then there is an embedding
i : A → Â where Â ∈ V(A) is a simple reduct of an affine module. Furthermore, the
subgroup of this affine module generated by i(A) is Â.

Proof: Let 〈Â; p(x, y, z)〉 be the expansion described in Lemma 3.7 of the simple algebra
Â of Lemma 3.6. 〈Â; p(x, y, z)〉 is an idempotent, simple, abelian algebra by Lemma 3.7.
By Theorem 9.16 of [2] and the fact that 〈Â; p(x, y, z)〉 is idempotent and simple, we get
that 〈Â; p(x, y, z)〉 is a simple affine module. It follows that Â is a reduct of a simple affine
module. Since A = A0 and i0 : A0 → Â is an embedding (by Lemma 3.6 (ii)) we have
proven the first claim of this theorem (taking i = i0).

We may assume that the ring associated with the module structure on 〈Â; p(x, y, z)〉 acts
faithfully. If we take 0 to be the zero element of this module, then the equations t(x, x) = 0
and t(x, 0) = x force t(x, y) = x− y in this module. If one now looks back to the definition
of t and in, one will find that in+1(An+1) = t(in(An), in(An)). Since Â =

⋃
in(An), we get

that Â is generated under t(x, y) = x − y by the set i0(A0) = i(A). This proves the second
claim of the theorem. 2

Theorem 1.1 is a consequence of Theorems 2.3 and 3.8.
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4 Restrictions on Subalgebras

In this section we refine Theorem 1.1 in the case that A has no nontrivial proper subalgebras.

THEOREM 4.1 If A is an idempotent algebra with no nontrivial proper subalgebras, then
exactly one of the following conditions is true.

(i) A is term equivalent to the 2-element set,

(ii) A is term equivalent to the 2-element semilattice,

(iii) A is a reduct of an affine module and A is not essentially unary or

(iv) Every member of HSPfin(A) is congruence distributive.

Proof: Our proof shall be quite similar to the proof of Theorem 2.3 except that we
shall apply our assumption that A has no nontrivial proper subalgebras in appropriate
spots in order to strengthen our conclusion. Note that since A is idempotent and has no
proper nontrivial subalgebras, A is simple; for any nontrivial proper congruence class is a
subuniverse.

We omit the argument for the case |A| = 2; this case can be handled as we described
at the beginning of Section 2. Also, we will only explain why A must satisfy “at least one”
of the conditions (i)− (iv). The argument that shows that A satisfies no more than one of
these conditions can be found in the proof of Theorem 2.3.

We will see that the condition in (iv) can be strengthened to (iv)′: If B is isomorphic
to a subalgebra of Am but not isomorphic to a subalgebra of Am−1, then ConB ∼= 2m.
From this it follows that every member of SPfin(A) (and thus every member of HSPfin(A))
is congruence distributive. To prove the theorem it will suffice to prove that if A does not
satisfy (iv)′ and |A| > 2, then A is a reduct of an affine module. Assume that A does not
satisfy condition (iv)′. Then for some m > 1 there is some subalgebra B ≤ Am where B
is not isomorphic to a subalgebra of Am−1, but where ConB is not isomorphic to 2m. We
assume that m is chosen minimally for this. In particular, the representation B ≤ Am is
irredundant and subdirect. If ηi is the kernel of the coordinate ith projection of Am, then we
use the same symbol, ηi, to denote the restriction of this congruence to B. The irredundance
of the representation B ≤ Am implies that 0 < η′i for each i and this implies that all product
congruences are distinct. Furthermore, the (meet semilattice) of product congruences on
B is order-isomorphic to 2m. It follows that B has a congruence θ which is not a product
congruence. We may choose i so that ηi 6≥ θ since θ 6= 0. Arguing as in the proof of Theorem
2.3, we may assume that i = 0 and θ 6≥ η′0. Again we split our argument into two cases.
Case 1: B has a congruence δ such that 0 < δ < η ′0. Case 2: B has no congruence δ such
that 0 < δ < η′0.

Proof for Case 1: Write Am as A × Am−1. Each η′0-class of B is a subuniverse of
the form (A × {c}) ∩ B where c ∈ Am−1. Since A × {c} is a subuniverse of A × C which
generates an algebra isomorphic to A and A has no proper nontrivial subalgebras, it follows
that either A× {c} ⊆ B or else |(A× {c}) ∩ B| = 1. Define

C = {c ∈ Am−1 | A× {c} ⊆ B}.
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We claim that C is a subuniverse of Am−1. To see this, choose a fundamental operation
f , say of arity `, and elements c0, . . . , c`−1 ∈ C. Choose distinct a, b ∈ A. Then from the
definition of C we have (a, ci), (b, ci) ∈ B for all i, so

p := f((a, c0), . . . , (a, c`−1)) = (a, f(c0, . . . , c`−1)) ∈ B

and similarly q := (b, f(c0, . . . , c`−1)) ∈ B. But p and q are distinct elements of B contained
in the subuniverse A×{f(c0, . . . , c`−1)}. Since the subalgebra generated by this subuniverse
is isomorphic to A and A has no proper nontrivial subalgebras, it must be that

A× {f(c0, . . . , c`−1)} ⊆ B

which means that f(c0, . . . , c`−1) ∈ C. This proves that C is a subuniverse. Define U ⊆ C
by

U = {u ∈ C | δ|A×{u} = 1A×{u}}.
Since 0 < δ < η′0 it follows that B has a nontrivial δ-class (which equals an η ′0-class) and also
B has a nontrivial η′0-class which is not a δ-class. The nontrivial η′0-classes of B are precisely
the sets of the form A× {c} where c ∈ C. Hence 0 < δ < η ′0 implies that U is a nonempty,
proper subset of C.

Claim. If t(x, ȳ) is an (n + 1)-ary term which depends on x in A and s̄ ∈ Cn, then
tC(U, s̄) ⊆ U .

Proof of Claim: Assume otherwise that t(x, ȳ) depends on x in A and for some u ∈ U
we have tC(u, s̄) = v 6∈ U . Since tA(x, ȳ) depends on x, there is some r̄ ∈ An such that
tA(x, r̄) is non-constant. Recall that u ∈ U means precisely that A × {u} is a nontrivial
δ-class. Applying the polynomial tA×C(x, (ri, si)) to this class, we obtain that the set

tA×C(A× {u}, (ri, si)) = tA(A, r̄)× {v}

is a nontrivial subset contained in A × {v}. Since this subset is a polynomial image of a
δ-class, δ restricts nontrivially to A× {v}. This implies that A × {v} is a δ-class. But this
forces v ∈ U which is contrary to our assumption. This proves the Claim.

The Claim just proven implies that U is a class of a congruence on C. Let ψ be a
congruence on C which is maximal for the property that U is a ψ-class. Since U 6= C we
get that ψ < 1. Now C is a subalgebra of Am−1, so there exists a k < m such that C
is isomorphic to a subalgebra of Ak but not isomorphic to a subalgebra of Ak−1. By the
minimality of m we have that ConC ∼= 2k for this value of k. In 2k there is a unique
way to represent the bottom element as a meet of meet-irreducible elements. Since C is a
subdirect power of A, it follows that the maximal congruences of C are exactly the kernels
of homomorphisms of C onto A. Choose a maximal proper congruence β ∈ ConC such that
ψ ≤ β. Let α be a complement of β in ConC (∼= 2k). We have α ∧ ψ = 0, so ψ < α ∨ ψ. If
U was a union of α-classes, then U would be a union of α∨ψ-classes. But this would violate
the maximality of ψ. We conclude that U is not a union of α-classes. There must be some
α-class V such that V 6⊆ U , but V ∩U 6= ∅. V is a subuniverse since it is a congruence class.
The facts that α complements β and β is the kernel of a homomorphism onto A implies that
the subalgebra V ≤ C which is generated by V is isomorphic to a nontrivial subalgebra of
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A: i.e., V ∼= A. Now U ∩ V is a proper subuniverse of V , so this set must contain only one
element. Say U ∩V = {0}. Let’s interpret what the previous Claim means when s̄ is chosen
from V n (we use the fact that V ∼= A): If t(x, ȳ) is an (n+ 1)-ary term which depends on x
in V and s̄ ∈ V n, then tV(0, s̄) = 0. This means precisely that 0 is an absorbing element for
V. Choose v ∈ V − {0}. From the definition of an absorbing element, it follows that {0, v}
is a subuniverse of V . This is impossible, since V ∼= A and A is an algebra with more than
two elements which has no proper nontrivial subalgebras. This shows that Case 1 can never
occur when |A| > 2.

Proof for Case 2: Now assume that B has no congruence δ such that 0 < δ < η ′0.
Since θ 6≥ η′0, we have θ ∧ η′0 < η′0. Because we are in Case 2, this means that θ ∧ η′0 = 0.
Hence C(θ, η′0) and so θ ≤ (0 : η′0). As η0 and η′0 are complements, we also have η0 ∧ η′0 = 0
and so C(η0, η

′
0) also holds. Thus η0 ≤ (0 : η′0). Altogether this implies that θ∨η0 ≤ (0 : η′0).

But η0 6≥ θ, by choice, and η0 ≺ 1 since A is simple. Hence θ ∨ η0 = 1 and so (0 : η′0) =
1 and it follows that C(1, η′0) holds. If V is a nontrivial η′0-class, then the subalgebra of B
generated by V is isomorphic to a subalgebra of B/η0

∼= A, so V ∼= A. But V is a class
of an abelian congruence. Hence V, and therefore A, is an abelian algebra. Theorem 1.1
proves that A is a subreduct of an affine module. We shall prove that A is a reduct of an
affine module.

As proved in the last section, there is a largest proper congruence ∆ on A2 which has the
diagonal of A2 contained in a single ∆-class. Choose 0 ∈ A arbitrarily and let A′ = A2/∆
and define

(i) δ : A→ A2 : a 7→ (a, 0),

(ii) t : A2 → A′ : (a, b) 7→ (a, b)/∆ and

(iii) ε = t ◦ δ.

We proved (in Lemma 3.2 and we reiterated in Lemma 3.5) that ε is a 1-1 homomorphism.
We claim that ε is onto as well. This amounts to proving that t(A,A) = t(A, 0). To prove
this, choose any b ∈ A with b 6= 0. Let U = A × {0} and let V = {b} × A. U and V are
subuniverses of A2 which generate subalgebras isomorphic to A. Since δ(A) = U we get
that ε(A) = t ◦ δ(A) = t(U). The homomorphism ε is non-constant, so it must be that t is
non-constant on U . U ∼= A is simple, so we get that t is 1-1 on U . Now (b, 0) ∈ U ∩ V and

t(b, 0) 6= t(0, 0) = t(b, b)

where the non-equality follows from the fact that b 6= 0 and t is 1-1 on U . This proves that
t is non-constant on V since t(b, 0) 6= t(b, b). Since V ∼= A we conclude that t is 1-1 on V .

t(U) and t(V) are subalgebras of A′ which are isomorphic to A. Furthermore, t(U)∩t(V )
contains the distinct elements t(b, 0) and t(b, b). In this case we must have t(U) = t(V ) since
otherwise one of the algebras t(U) or t(V), both of which are isomorphic to A, has a
nontrivial proper subuniverse: t(U) ∩ t(V ). We have proven the following statement: For
any distinct elements 0, b ∈ A it is the case that t(A, 0) = t(b, A). This together with our
assumption that |A| > 2 implies that t(A, 0) = t(A,A).
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Now that we know ε is onto, we get that each εn in Lemma 3.5 is an isomorphism. It
follows that A ∼= Â in Lemma 3.6. This proves that A is a reduct of a module in Case 2
and concludes the proof of the theorem. 2

One may wonder if in Theorem 4.1 (iii) it must be that A is itself an affine module. The
answer is “yes” if A is finite. This can be deduced from theorems in the next section. But
in general the answer is “no”. Another question that arises is whether A must generate a
congruence distributive variety in Theorem 4.1 (iv). The answer is again “yes” when A is
finite, but “no” in general. Here are examples which support these claims.

Example. Let F2 denote the 2-element field and let V be the F2-space with basis B =
{en | n < ω}. Let R = F2〈α, β〉 be the free F2-algebra in the noncommuting variables α
and β. We define an R-module structure on V by defining actions of α and β on B and
extending these definitions to V by linearity. We define α(en) = en−1 if n > 0 and α(e0) = 0;
β(en) = en2+1. V is a faithful simple R-module as is proved on pages 196–197 of [7]. We
define A to be the algebra which is the reduct of RV to the operations rx+ (1− r)y, r ∈ R.
Clearly, A is idempotent.

The translations x 7→ x+a form a transitive group of automorphisms of A, so to see that
A has no proper nontrivial subalgebras it suffices to prove that if b 6= 0, then the subuniverse
generated by {0, b} ⊆ V is all of V . Certainly the subuniverse generated by {0, b} contains
all elements of the form rb + (1− r)0 = rb. Hence this subuniverse contains all elements of
V which belong to the submodule of RV generated by b. But Rb = V since RV is simple, so
we are done.

We have shown that A is an algebra of the sort described in Theorem 4.1 (iii). We now
show that A is not affine. Let I be the ideal of R generated by {α, β}. Since R/I ∼= F2 it
follows that for all r ∈ R we have r ∈ I or (1 − r) ∈ I, but not both. Hence the set of all
idempotent operations of the form

r1x1 + · · ·+ rnxn where ri ∈ I for all but one i

is a clone on V which contains each rx + (1 − r)y, r ∈ R, but does not contain x − y + z.
Since RV has x−y+ z as its unique Mal’cev operation and this operation is not in the clone
of A, it follows that A is not affine. 2

The next example was supplied by Ágnes Szendrei.

Example. Let A be an infinite set and consider all operations f on A which have the
following properties:

(i) f(x, . . . , x) = x for all x ∈ A.

(ii) Assume that the variables on which f depends are xi0 , . . . , xin−1 . There is a finite set
S ⊆ A such that f(ā) ∈ S whenever aij 6= aik for some j, k < n.

When f depends on all of its variables, these properties say that f is idempotent, but has
finite range “off the diagonal”. We let A be the algebra with universe A and basic operations
chosen so that each operation on A satisfying (i) and (ii) is the interpretation of a basic
operation. The following facts are easily verified.
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• All operations in the clone of A are the interpretation of basic operations. (That is,
the operations on A satisfying (i) and (ii) are closed under composition and contain
the projections.)

• A is idempotent.

• A has no proper nontrivial subuniverse.

• A is not abelian.

• A has no ternary operation m(x, y, z) which depends on its middle variable and satisfies
m(x, y, x) = x on A.

These items imply that A is an algebra which falls under case (iv) of Theorem 4.1. If V(A)
is a congruence distributive variety, then for some q this variety would have terms mi(x, y, z),
i < q, such that the following list of equations hold in V(A):

(i) m0(x, y, z) = x, mq−1(x, y, z) = z,

(ii) mi(x, y, x) = x for all i,

(iii) mi(x, x, z) = mi+1(x, x, z) for even i, and

(iv) mi(x, z, z) = mi+1(x, z, z) for odd i.

The second equation implies that each mi is independent of its middle variable. This can be
coupled with equations (iii) and (iv) to deduce that mi(x, y, z) = mj(x, y, z) for all i and j.
Finally, applying (i) we get that

x = m0(x, y, z) = mq−1(x, y, z) = z

is an equation of V(A). But this is false, since A is nontrivial. We conclude that V(A) is
not congruence distributive. 2

Of course, if A is finite and falls under case (iv) of Theorem 4.1, then the fact that V(A)
is locally finite and HSPfin(A) is congruence distributive is enough to imply that V(A) is
congruence distributive.

The last two pathological examples indicate the limits of Theorem 4.1. However, we
can give a more complete description of idempotent algebras without proper subalgebras
satisfying additional hypotheses. The next theorem is an example of such a result.

THEOREM 4.2 Let A be a non-unary algebra with a minimal clone which has no non-
trivial proper subalgebras. Then exactly one of the following conditions is true.

(i) A is term equivalent to the 2-element semilattice,

(ii) A is term equivalent to an affine vector space over a prime field, or

(iii) A is term equivalent to a 2-element algebra with a majority operation.
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Proof: Since A is non-unary and has a minimal clone, it is idempotent. According to
Lemma 2.1 and the proof of Lemma 3.3 in [14], if A is idempotent, has no nontrivial proper
subalgebras and |A| > 2, then A

(a) has a local discriminator operation,

(b) is locally affine, or

(c) has an element 0 and a local operation x ∗ y such that 0 ∗ x = x ∗ 0 = 0 and x ∗ y = x
when x 6= 0 6= y.

We assume that |A| > 2 and analyze each of these three cases.
Assume that A has a local discriminator operation. Choose distinct a, b ∈ A and an

operation d(x, y, z) in Clo3(A) whose restriction to {a, b} is the discriminator on that set.
It cannot be that d(x, y, z) is a projection, so d generates Clo(A). The fact that {a, b} is
closed under d implies that {a, b} is closed under all members of Clo(A). Hence {a, b} is
a subuniverse. A has no nontrivial proper subuniverses, so |A| = 2 which contradicts the
assumption in the last paragraph.

The contradiction in Case (c) is obtained in exactly the same way: choose a ∈ A− {0}.
Then choose b(x, y) ∈ Clo2(A) so that b interpolates the local term operation x∗y on {0, a}.
The operation b(x, y) is not a projection, so it generates the clone of A. But {0, a} is closed
under b, hence it is a subuniverse. This implies that |A| = 2.

It must be that A is locally affine. Fix an affine representation of A over the appropriate
ring, denoted R, and choose an operation r1x1+· · ·+rnxn ∈ Clo(A) which is not a projection.
We may assume that r1 6∈ {0, 1}, so by setting x1 equal to x and all other variables equal
to y we get that r1x+ (1− r1)y is an operation in the clone which is not a projection. This
operation generates the clone. It is a consequence of this that R is generated as a ring by
the element r1. The expansion of A to an R–module is still simple. There are no infinite
simple modules over 1–generated rings. (1–generated rings are commutative, simple modules
over commutative rings are 1–dimensional vector spaces, 1–dimensional vector spaces over
1–generated rings are finite.) But a finite, locally affine algebra is affine. Hence, A is a
1-dimensional affine vector space over a finite field. The minimality of the clone implies that
field of scalars is a prime field.

What remains to check is the case where |A| = 2. In this case, the classification of
clones on a 2-element set given in [10] proves that A must be affine over the 2-element field,
equivalent to the 2-element semilattice or to the 2-element majority algebra. 2

5 Minimal Varieties

As we described in the Introduction, the study of simple algebras is closely related to the
study of minimal varieties. A full classification of the simple algebras in a given variety leads
immediately to a full classification of the minimal subvarieties, but in fact the determination
of minimal subvarieties can usually be accomplished with only a partial knowledge of the
simple algebras. For example, one does not need a description of all simple groups to see that
the minimal varieties of groups are precisely the varieties of elementary abelian p-groups. It
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suffices to know that a 1-generated simple group has prime cardinality. It turns out that
the partial description we have of idempotent simple algebras is detailed enough to serve as
a basis for a classification of all locally finite, idempotent, minimal varieties. However, our
only achievement would be to reproduce the main result of [15]: Call a minimal idempotent
variety exceptional if it is not

(i) term equivalent to the variety of sets,

(ii) term equivalent to the variety of semilattices,

(iii) a variety of affine modules, or

(iv) a congruence distributive variety.

THEOREM 5.1 (Á. Szendrei) There is no exceptional, locally finite, idempotent, minimal
variety.

This result can be obtained as a corollary to Theorem 4.1. Any locally finite minimal
variety is generated by a finite simple algebra which has no proper nontrivial subalgebras.
Such an algebra must be term equivalent to a 2-element set, a 2-element semilattice, a reduct
of an affine module or it must be that HSPfin(A) = V(A) is congruence distributive. The
only detail we must attend to is a proof that when A is a finite simple reduct of an affine
module and A has no proper nontrivial subalgebras, then A is an affine module or is term
equivalent to the 2-element set. This fact follows immediately from the results of this section,
but it is only a byproduct of our efforts. Our real goal is not to duplicate the characterization
of locally finite, idempotent, minimal varieties described above. We are interested only in
whether there exist exceptional, idempotent, minimal varieties and this goal necessarily leads
us into the realm of non-locally finite varieties. The principal result of this section is that
no exceptional variety contains a subreduct of an affine module. This result can be used to
complete the proof of Theorem 5.1 that we have just sketched.

Theorem 5.1 indicates that an exceptional, idempotent, minimal variety is not locally
finite. Referring to Theorem 1.1, it is clear that an exceptional variety will not contain a
simple algebra of type (a). For if A is such a simple algebra and 0 ∈ A is absorbing, then
for any a ∈ A − {0}, {0, a} is a subuniverse. Hence, there is no non-locally finite minimal
variety which contains a simple algebra of type (a). This means that an exceptional variety
must be generated by an infinite simple algebra of type (b) or (c). This gives us the following
result about non-locally finite minimal varieties. (In this proposition we say that A is an
(x − y + z)-reduct of the affine module M if A is a reduct of M, but the subclone of
M generated by x − y + z and the operations of A is the full clone of M. A is a proper
(x− y + z)-reduct of M if x− y + z is not in the clone of A.)

PROPOSITION 5.2 Let V be an exceptional, idempotent, minimal variety. Then V is
generated by an infinite simple algebra A where
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(i) A is a simple, proper (x− y + z)-reduct of an affine module or

(ii) Every finite power of A is skew-free. 2

The argument for this has essentially already been given. If A is of type (c) from Theorem
1.1, then we are in case (ii) of this proposition. If A is of type (b), then we can replace A
with the simple algebra Â ∈ V which we described in Theorem 3.8. Since V is exceptional, Â
is a proper (x−y+ z)-reduct of an affine module. Now we are in case (i) of this proposition.

In this section we show that there is no exceptional, idempotent, minimal variety gener-
ated by an algebra of the type described in Proposition 5.2 (i).

LEMMA 5.3 If a variety contains a nontrivial subreduct of an affine algebra, then it con-
tains one which is a reduct of a simple module over a simple ring.

Proof: Assume that the variety V contains A, which is a subreduct of the affine algebra
M. Fix an affine representation for the operations of A. We may assume that the clone of M
is generated by the operations of A and the operation p(x, y, z) = x − y + z. Furthermore,
we may assume that M is generated under these operation by the set A. If we take the
reduct of M to the operations of A, and call this reduct M′, then we may assume that A is
maximal under inclusion as a subuniverse of M′ which generates an algebra belonging to V.
Under all these (permissible) assumptions, A is a reduct of M (not just a subreduct). Here is
why. The operation p(x, y, z) is a homomorphism p : M3 →M which is a left inverse to the
diagonal homomorphism δ : M→M3 : x 7→ (x, x, x). Both p and δ remain homomorphisms
when we replace M with its reduct M′. Hence we have a homomorphism p ◦ δ|A : A→M′

which is the identity on A, since p ◦ δ = idM. It follows that

A = p ◦ δ|A(A) ⊆ p(A,A,A).

Since A3 ∈ V and (ker p)|A3 is a congruence on A3, we get that

p(A,A,A) ∼= A3/(ker p)|A3 ∈ V.

But p(A,A,A) is the subalgebra of M′ with universe p(A,A,A) ⊇ A. The maximality
condition on A implies that A = p(A,A,A) and therefore that A is closed under x− y + z.
Since this operation and the operations of A generate the clone of M, A is a subuniverse of
M. We chose M so that A generates M, so A = M .

Let N be a simple algebra generating a minimal subvariety of HSP(M). Replacing N by
its linearization if necessary, we may assume that N is a reduct of a module. There exists
a cardinal κ, a subalgebra P ≤Mκ and a congruence θ such that P/θ ∼= N. Let P′ be the
reduct of P to the operations of A. Then P′ is a subalgebra of Aκ and the equivalence relation
θ is a congruence on P′. N′ := P′/θ is the reduct of N to the operations of A. This makes N′

a reduct of the simple affine algebra N which is itself a reduct of a module. Since N generates
a minimal variety, the corresponding ring is simple. Furthermore, N′ ∈ HSP(A) ⊆ V. Hence,
N′ fulfills the claims of the lemma. 2
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In Lemma 5.3, the algebra N′ constructed is an (x − y + z)-reduct of a simple, linear,
affine algebra over a simple ring. Expanding N′ by x − y + z and a constant 0 interpreted
as a trivial subalgebra, one obtains a simple module over a simple ring.

Observe that if we attempt to apply Lemma 5.3 to an abelian idempotent simple alge-
bra, then we gain some information and we lose some information. Starting with a simple
subreduct of an affine module, we end up with a reduct of a simple affine module over a
simple ring. What we gain is the simplicity of the coefficient ring. What we lose is the
simplicity of our abelian algebra. We shall find that the simplicity of the coefficient ring is
more important for us than the simplicity of the abelian algebra.

For the rest of this section, we assume that A is a reduct of a simple affine R-module M
where R is a simple ring. We assume also that A generates an exceptional minimal variety,
so A is a proper (x − y + z)-reduct of M. We do not assume that A is simple. Each term
operation of A may be expressed uniquely as

tA(x0, . . . , xn−1) = r0x0 + · · ·+ rn−1xn−1

where each ri ∈ R and Σi<nri = 1 (since t(x, . . . , x) = x). If some r ∈ R appears as the ith co-
efficient of some term t, then it occurs as the coefficient of x in the term t(y, . . . , y, x, y, . . . , y)
where x is in the ith position. Hence r ∈ R is a coefficient in some term iff rx + (1 − r)y
represents a term operation of A. The set of distinct binary term operations of A may be
identified with a subset U ⊆ R under the correspondence rx + (1− r)y ↔ r. This set U of
coefficients of terms must satisfy some very special properties.

Definition 5.4 If R is a ring, then a set U ⊆ R will be called a unit interval if the
following conditions are met.

(i) U is a proper subset of R.

(ii) 0, 1 ∈ U .

(iii) U 6= {0, 1}.

(iv) If a, b, c ∈ U , then ab + (1− a)c ∈ U .

(v) R is generated by U as an abelian group.

Note that condition (iv) implies that U is closed under multiplication (take c = 0) and also
under the function x 7→ (1− x) (take b = 0, c = 1).

THEOREM 5.5 Assume that A is not essentially unary. If A is a proper (x−y+z)-reduct
of an affine module over a simple ring, then the set of coefficients of term operations of A is
a unit interval.

Proof: The set U of coefficients of binary term operations ax + (1 − a)y satisfies (ii)
since the projection operations p0(x, y) = x = 1x + 0y and p1(x, y) = y = 0x + 1y are
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term operations. (iv) is satisfied, since if a, b, c ∈ U , then ax + (1− a)y, bx + (1− b)y and
cx + (1− c)y represent binary terms, so

a(bx + (1− b)y) + (1− a)(cx + (1− c)y) = (ab+ (1− a)c)x + (1− (ab + (1− a)c))y

also represents a binary term. This proves that ab+(1−a)c ∈ U . Using the fact that x−y+z
commutes with all term operations of A, we see that the collection of binary terms of A
generate all binary terms of 〈A; x− y+ z〉 under the operation x− y+ z. Thus the additive
subgroup of R generated by U contains all elements of R which occur as the coefficient x in
some binary term of 〈A; x− y+ z〉. But the binary terms of 〈A; x− y+ z〉 up to equivalence
are the set of all operations rx+ (1− r)y, r ∈ R. Hence U generates R under x− y+ z and
(v) holds.

Assume that U = {0, 1}. Since A is not essentially unary, there is a term which depends
on all n > 1 of its variables: r0x0 + · · ·+ rn−1xn−1. Since all coefficients come from U − {0}
= {1}, this term is simply x0 + · · ·+ xn−1. But now if we set the first two variables equal
to x1, we get a new term 2x1 + · · · + xn−1. Since all coefficients belong to U = {0, 1} we
must have 2 = 0 or 2 = 1 in R. But 2 = 1 forces R, and therefore A to be trivial. We must
have 2 = 0. Now property (v) implies that R is the 2-element field. A can only be a reduct
of a 1-dimensional affine vector space over R. But the clone of a 1-dimensional affine vector
space over the 2-element field is a minimal clone. Hence, the only reducts of a 1-dimensional
affine vector space over the 2-element field are the full clone of the affine vector space and
the clone of projection operations. Our assumptions tell us that A is not essentially unary
and A is not affine. This is a contradiction to U = {0, 1}.

To finish we must prove (i). Suppose that U = R. Then the clone of A contains every
operation of M of the form rx + (1 − r)y, r ∈ U = R, but it does not contain x − y + z.
Corollary 2 of [13] proves that x−y+z is in the clone generated by {rx+(1−r)y | r ∈ R} if
and only if R has no homomorphism onto a 2-element field. Hence U = R implies that our
simple ring R has a homomorphism onto a 2-element field. This means that R is a 2-element
field. Now we have U = R = {0, 1} even though we have already shown that U = {0, 1} is
false. This contradiction proves that U ⊂ R. 2

A simple ring may have more than one unit interval. For example, if U is a unit interval
of R and α is an automorphism of R, then α(U) is another unit interval. If R is the
field obtained by adjoining to the field of rationals the number

√
2 and α is the nontrivial

automorphism of this field, then U := Q[
√

2] ∩ [0, 1], U ′ := α(U) and in this case U ′′ :=
U ∩ U ′ are all unit intervals of Q[

√
2]. So, there may be many unit intervals, some properly

containing others. (The observations of this paragraph are due to G.M. Bergman.)
Which simple rings have unit intervals? We focus on this question now. First, we explain

how to construct some examples.

Definition 5.6 Let R be a ring. A positive cone of an ordering of R is a subset P ⊆ R
satisfying

(i) P + P ⊆ P ,

(ii) P · P ⊆ P and
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(iii) P ∩ −P ⊆ {0}.

That is, P is closed under addition and multiplication and does not contain both r and −r
if r 6= 0. The ordering of R associated with P is

a ≤ b⇔ b− a ∈ P.

We call 〈R;≤〉 a partially ordered ring.

The words “positive”, “negative” and the symbol < have their usual meanings, as does
the interval notation [x, y] := {z ∈ R | x ≤ z ≤ y}. “Ordering” will always mean “partial
ordering”. If n is an integer, then the element n · 1 ∈ R, defined to be a sum of n copies of
1, will be denoted simply by n.

Definition 5.7 Let 〈R;≤〉 be a partially ordered ring. R is archimedean if na ≤ b for all
positive integers n implies a ≤ 0 whenever a, b ∈ R. An element e ∈ R is a strong order
unit if whenever a ∈ R there is a positive integer n such that a ≤ ne. We say that 〈R;≤〉
is strongly archimedean if it is archimedean and 1 is a positive strong order unit.

If R is a subfield of the real numbers and ≤ is the restriction to R of the usual ordering,
then 〈R;≤〉 is an example of a strongly archimedean partially ordered, simple ring. The next
theorem describes one half of the connection between unit intervals and strongly archimedean
partial orderings.

THEOREM 5.8 A simple ring with a strongly archimedean partial ordering has a unit
interval.

Proof: Let 〈R;≤〉 be a simple ring with a strongly archimedean partial ordering. We
denote the center of R, which is a field, by Z(R). Define

P ′ =

{
p

f
∈ R | p ∈ P, f ∈ (P ∩ Z(R))− {0}

}
.

P ′ is the closure of P under division by positive elements of F. An easy exercise shows that
P ′ is the positive cone of a partial ordering which extends the one given by P . Any extension
of a strongly archimedean partial ordering is another strongly archimedean partial ordering,
so P ′ determines such an ordering. P ′ is closed under division by positive central elements
(even by division by the central elements that are P ′-positive but not P -positive). Replacing
P with P ′ we may assume that our ordering has the property that the positive cone is closed
under division by positive central elements.

Let U = {r ∈ R | 0 ≤ r ≤ 1}. We claim that U is a unit interval in R. We must show
that

(i) U is a proper subset of R.
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(ii) 0, 1 ∈ U .

(iii) U 6= {0, 1}.

(iv) If a, b, c ∈ U , then ab + (1− a)c ∈ U .

(v) R is generated by U as an abelian group.

Since U ⊆ P ⊂ R, (i) is satisfied. (ii) clearly holds. (iii) holds since all rationals between
0 and 1 belong to U . For (iv), assume that a, b, c ∈ U . Then 0 ≤ a, b, c ≤ 1. We get that
0 ≤ 1− a ≤ 1, so each of a, b, c, (1− a) is between 0 and 1. From this we deduce that

0 ≤ ab + (1− a)c
≤ a · 1 + (1− a) · 1 = 1

Hence ab + (1 − a)c ∈ U . Finally, assume that r ∈ R. Since our ordering is a strongly
archimedean partial ordering, we can find positive integers m,n ∈ F such that −r < m and
m+r < n. These inequalities imply that 0 < m+r < n. Hence (m+r)/n ∈ U . The abelian
group generated by U contains all multiples of (m + r)/n, so it contains m + r. But this
group also contains all multiples of 1 ∈ U , so this group contains m. Since it contains m and
m + r it also contains r. Our choice of r ∈ R was arbitrary, so the abelian group generated
by U is R. This proves that U is a unit interval in R. 2

Strongly archimedean simple rings give us some examples of simple rings with unit in-
tervals. Our next goal is to prove the converse of Theorem 5.8, which is that all simple rings
with unit intervals are strongly archimedean partially ordered rings. The converse implica-
tion is really the only one that is useful to us; we will find the partial ordering easier to
work with than unit intervals. (Theorem 5.8 is included only to assure us that we lose no
generality in considering orderings rather than unit intervals.)

Let R be a simple ring with a unit interval U . To continue the analysis, it will be
convenient to associate to R an auxilary algebraic structure R̂. The universe of R̂ is R and
the basic operations of R̂ are just the binary operations [u](x, y) := ux + (1 − u)y, u ∈ U .
We will refer to R̂ = 〈R; [u], u ∈ U〉 as simply ‘the auxilary structure’. Note that R̂ is a
reduct of the affine R-module structure of RR. It is worth pointing out that property (iv)
of a unit interval implies that the binary term operations of R̂ are exactly those of the form
[u](x, y), u ∈ U . This implies, that no term operation of R̂ agrees with x− y + z, for then

[u](x, y)− [v](x, y) + [w](x, y) = [u− v + w](x, y)

would force U to be closed under x − y + z. Since 0 ∈ U 6= R and U generates R as an
abelian group, U is not closed under x− y + z. Thus, the auxilary structure R̂ is a proper
(x− y + z)-reduct of RR.

LEMMA 5.9 If a0x0 + · · ·+an−1xn−1 represents a term operation of R̂ and ai = 1 for some
i, then aj = 0 for all j 6= i.
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Proof: This proof is based on an idea from [12]. Assume that, say, a0 = 1. Then

a0x + a1z + a2y + · · ·+ an−1y = x− a1y + a1z

represents a term operation of R̂. But, we shall argue, the set I = {r ∈ R| x − ry + rz ∈
Clo3R̂} is a proper ideal of R. To see that I is an ideal, note that a, b ∈ I implies that

(x− bz + by)− ay + az = x− (a− b)y + (a− b)z,

so a − b ∈ I. Since I is closed under subtraction it is an abelian group. I is an additive
subgroup of R and U generates R as an additive subgroup, so to show that I is an ideal it
suffices to show that if a ∈ I and u ∈ U we have au, ua ∈ I. This is proved by the lines

x− a(uy + (1− u)z) + az = x− auy + auz

and
u(x− ay + az) + (1− u)x = x− uay + uaz.

The ideal I must be proper, for if 1 ∈ I then the definition of I would force x − y + z
into the clone of R̂ and we know this to be false. By the simplicity of R, I = {0}. Hence,
a1 = 0. The same type of argument proves that ai = 0 for all i > 0. 2

THEOREM 5.10 A simple ring with a unit interval has a strongly archimedean partial
ordering.

Proof: Let U be a unit interval of the simple ring R. Let P be the set of elements of R
that can be expressed as sums of elements of U . Our goal will be to show that P is a positive
cone for a partial ordering which is extendible to a strongly archimedean partial ordering.

Clearly P is closed under sums. Furthermore, the fact that U is closed under products
and P is the set of sums of elements of U implies that P is closed under products. The bulk
of our argument will be to prove that P ∩−P ⊆ {0}. If this is not the case, then there is an
r ∈ P −{0} such that r ∈ −P . From the definition of P this means that there are elements
u1, . . . , um ∈ U and v1, . . . , vn ∈ U such that

u1 + · · ·+ um = −(v1 + · · ·+ vn) = r 6= 0.

It follows that the ui, vi are not all zero even though (Σui) + (Σvi) = 0. We set

V = {u ∈ U | ∃w1, . . . , wk ∈ U(u + w1 + · · ·+ wk = 0)}.

V contains {u1, . . . , um, v1, . . . , vm} and so V properly contains {0}. Furthermore, since U
is closed under multiplication, it follows that U · V ⊆ V and V · U ⊆ V . If I is the abelian
group generated by V , then our conclusions mean that I is a nonzero ideal of R. To repeat
and amplify, P ∩ −P 6⊆ {0} implies that I = R.

Claim. I 6= R.

Proof of Claim: We begin with a little detour to uncover a strange property of the
elements of V . We will show that if u ∈ V , then there exists a positive integer n such that
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r(1− r)nu = 0 for any r ∈ U . (This fact was discovered by Ágnes Szendrei.) To show this,
fix some u ∈ V . Since u ∈ V there exist w1, . . . , wk ∈ U such that u + w1 + · · · + wk = 0.
We claim that r(1− r)nu = 0 for n = k and for any r ∈ U .

Fix specific choices of r, u and wi as described in the previous paragraph. Since r, u, wi ∈
U , we get that rx+ (1− r)y, ux+ (1−u)y and wix+ (1−wi)y are operations of the auxilary
structure, R̂. We can compose the operation rx+ (1− r)y with itself repeatedly in order to
produce operations of larger arity. We will change variables to those of the form xσ where σ
is a sequence of 0’s and 1’s in order to make it clearer how the composition should be done.
Begin with rx0 + (1− r)x1. If we substitute rxε0 + (1− r)xε1 in for the occurrence of xε in
rx0 + (1− r)x1, we obtain a 4-ary operation:

r(rx00 +(1−r)x01)+(1−r)(rx10 +(1−r)x11) = r2x00 +r(1−r)x01 +r(1−r)x10 +(1−r)2x11.

If t(x00, x01, x10, x11) denotes this 4-ary operation, we can build an 8-ary operation by substi-
tuting t(xε00, xε01, xε10, xε11) in for xε in rx0 +(1−r)x1. Continuing, for any n we can build a
2n-ary operation of the variables xσ, σ ∈ {0, 1}n, where the coefficient of xσ is rm(1− r)n−m
precisely when m is the number of 0’s in the string σ. We let s(x̄) be such an operation for
n = k + 1, Define τi, i = 0, 1, . . . , k, to be the element of {0, 1}k+1 which has a 0 in the ith

position and 1’s elsewhere. For each i, the coefficient of xτi is r(1− r)k. Substitute into the
variable xτi of s(x̄) the operation wizi + (1−wi)x if i > 0 and substitute uz0 + (1− u)x into
xτ0 . If σ is a sequence which does not have exactly one occurrence of 0, then set xσ equal
to x. With these substitutions into s(x̄) we end up with a new (k + 2)-ary operation in the
clone generated by the operations rx+ (1− r)y, ux+ (1− u)y and wix + (1− wi)y:

r(1− r)kuz0 + r(1− r)kw1z1 + · · ·+ r(1− r)kwkzk + Cx

for some C ∈ R. This operation is in the clone of R̂. If you set all variables equal to x and
use the fact that u+ w1 + · · ·+ wk = 0, you get

r(1− r)kux+ r(1− r)kw1x+ · · ·+ r(1− r)kwkx+ Cx = Cx.

But this operation is idempotent, so Cx = x. Thus,

r(1− r)kuz0 + r(1− r)kw1z1 + · · ·+ r(1− r)kwkzk + x

is in the clone of R̂. Now we apply Lemma 5.9 to this operation: the coefficient of x equals
1, so r(1− r)ku = r(1− r)kwi = 0 for all i. (All that we care about is that r(1− r)ku = 0,
though.)

Now we return to our proof that I 6= R. Assume instead that I = R. Then

1 = ±u1 ± · · · ± u`

for some choice of elements ui ∈ V . By the results of the last paragraph, there exist mi such
that r(1− r)miui = 0 for any r ∈ U and for each i. Since U is closed under the operation
x 7→ (1 − x), what we have said about r also holds for (1 − r): (1 − r)rmiui = 0 for all i.
Choose any N greater than all mi. Then for any r ∈ U we have

r(1− r)Nui = 0 = (1− r)rNui

29



for all i. Hence we have

r(1− r)N = r(1− r)N(u1 + · · ·+ u`) = 0 = (1− r)rN

for all r ∈ U .
We claim that there are polynomials with integer coefficients, p(x), q(x) ∈ Z[x], such that

xN−1 · p(x) + (1− x)N−1 · q(x) = 1.

Otherwise, the ideal J = (xN−1, (1− x)N−1) is proper in Z[x], so Z[x] has a maximal ideal
M containing J . Z[x]/M is a field which has an element x̄ := x/M such that x̄N−1 = 0 =
(1− x̄)N−1. This is impossible because it implies that x̄ = 0 = (1− x̄) or 1 = 0. Now, using
p and q we see that

r(1− r) = r(1− r)[rN−1 · p(r) + (1− r)N−1 · q(r)]
= r(1− r)N · p(r) + (1− r)rN · q(r)
= 0

whenever r ∈ U . This proves that for any r ∈ U we have r2 = r. We write U |= x2 = x for
this.

Choose a, b ∈ U . Recall that U is closed under multiplication and the function x 7→
(1− x). Hence

1− ((1− a)(1− b)) = a+ b− ab ∈ U.
Furthermore, taking c = 1−b in property (iv) of a unit interval we get ab+(1−a)(1−b) ∈ U ,
so

1− (ab + (1− a)(1− b)) = a+ b− 2ab ∈ U.
For x = a+ b− ab and for x = a+ b− 2ab we must have x2 = x. We calculate (using a2 = a,
b2 = b, (ab)2 = ab) that

a+ b− ab = (a+ b− ab)2

= a2 + ab− a2b+ ba + b2 − bab− aba− ab2 + abab
= a+ ab− ab+ ba + b− bab− aba− ab + ab
= a+ ba + b− bab − aba.

Hence aba + bab = ab + ba. A further calculation shows that

a+ b− 2ab = (a + b− 2ab)2

= a2 + ab− 2a2b + ba+ b2 − 2bab− 2aba− 2ab2 + 4abab
= a + ab− 2ab + ba+ b− 2bab− 2aba− 2ab+ 4ab
= a + ab+ ba + b− 2bab− 2aba.

This yields 2aba + 2bab = 3ab + ba. Our two conclusions together give us that

3ab + ba = 2(aba + bab) = 2(ab + ba) = 2ab + 2ba.

This simplifies to ab = ba. Since a, b ∈ U were chosen arbitrarily, U |= xy = yx. As U
generates R as an abelian group we must have R |= xy = yx. R is a commutative simple
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ring, so R is a field. Since U |= x2 = x, U is contained in the set of idempotents of the field
R. Thus U ⊆ {0, 1}. This contradicts the fact that U is a unit interval: U must properly
contain {0, 1}. This contradiction finishes the proof of the Claim.

The impact of the Claim is that P is the positive cone of a partial ordering of R. In this
ordering, if u ∈ U , then u, 1− u ∈ U ⊆ P so 0 ≤ u ≤ 1 as one might hope. We argue that 1
is a positive strong order unit. Positivity of 1 follows from 1 ∈ U ⊆ P . Now we must show
that every element of R is majorized by a positive integer. Fix r ∈ R. Since R is generated
as an abelian group by U , we can find u1, . . . , ui ∈ U and v1, . . . , vj ∈ U such that

−r = u1 + · · ·+ ui − v1 − · · · − vj.

For each vk ∈ U we have (1− vk) ∈ U , so we can re-express this as

−r = u1 + · · ·+ ui + (1− v1) + · · ·+ (1− vj)− j.

Since u1 + · · ·+ui+ (1− v1) + · · ·+ (1− vj) ∈ P , this expresses −r as p− j where p ∈ P and
j is a nonnegative integer. We conclude that r ≤ j. Since r is majorized by a nonnegative
integer and 1 is positive, r is majorized by a positive integer. This proves that 1 is a positive
strong order unit under the ordering determined by P .

It can be shown by example that the P -ordering does not have to be archimedean. So
replace P with a maximal extension. This does not affect the fact the 1 is a positive strong
order unit, but it implies extra properties of P . For example, by maximality, P must be
closed under division by positive central elements. Define P ′ to be the set of all x ∈ R such
that − 1

n
≤ x holds for all positive integers n. Then P ⊆ P ′, P ′ + P ′ ⊆ P ′ and (since 1 is

a positive strong order unit) P ′ · P ′ ⊆ P ′. Furthermore, using the fact that 1 is a positive
strong order unit, it is easy to see that

K := P ′ ∩ −P ′ =
⋂

n<ω

[
− 1

n
,

1

n

]

is an ideal of R. Since 1 6∈ K, we have K = {0}. P ′ is the positive cone of an ordering which
extends the P -ordering, so P = P ′.

Since 1 is a strong order unit and P is closed under division by positive integers, na ≤ b
holds for all positive n iff a ≤ 1

n
holds for all positive n. The latter condition is equivalent to

a ∈ −P ′ = −P which may be expressed as a ≤ 0. This proves that P is the positive cone of
an archimedean partial ordering, so R is a strongly archimedean partially ordered ring. 2

For us, the most important fact about strongly archimedean partial orderings of simple
rings is contained in the next theorem. The proof evolved out of email correspondence with
K.H. Leung.

THEOREM 5.11 A simple ring with a strongly archimedean partial ordering has no non-
trivial zero divisors.

Proof: Replacing P by an extension if necessary, we may assume that P is closed under
division by positive central elements. Assume that r2 = 0 in R. Using the fact that 1 is a
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strong order unit, select and fix a positive integer q such that −r ≤ q. Since 0 ≤ r + q, we
get that, for any positive integer m,

0 ≤ (r + q)m = mrqm−1 + qm = mqm−1(r +
q

m
).

Since P is closed under division by positive central elements, the integer mqm−1 is positive
and central, and 0 ≤ mqm−1(r + q

m
), we get that 0 ≤ r + q

m
. Thus, − q

m
≤ r for fixed q and

increasing m. It follows that − 1
n
≤ r for all n, so r ∈ P by the archimedean property. But

if r2 = 0, then we also have (−r)2 = 0. We get −r ∈ P as well. Hence, r ∈ P ∩ −P ⊆ {0}
which means that r = 0. This proves that R has no nonzero nilpotent elements.

Now assume that for certain a, b ∈ R we have ab = 0. Then each element of bRa is
nilpotent. From our earlier conclusion, bRa = {0}. This implies that the product of the
ideals generated by b and a is

(b)(a) = (RbR)(RaR) = R(bRa)R = {0}.

But the only ideals of R are {0} and R. Since RR = R 6= {0} we conclude that (a) = {0}
or (b) = {0}. Hence a = 0 or b = 0. 2

We are prepared to prove the main result of this section.

THEOREM 5.12 Let V be a minimal idempotent variety and assume that V contains a
nontrivial subreduct of an affine module. Then V is equivalent to the variety of sets or else
is affine. In particular, V is not exceptional.

Proof: Assume that V = V(A) where A is a nontrivial subreduct of an affine module.
By Lemma 5.3, we may assume that A is a reduct of an affine module N over a simple ring,
R. Fix such a representation for A. If A is affine or essentially unary, then we are done, so
assume that A is neither. Theorem 5.5 proves that R has a unit interval U , and that the
binary term operations of A are precisely the operations ux + (1 − u)y, u ∈ U . Using the
same argument as in the proof of Lemma 5.3 we may adjust our choice of A so that it is a
reduct of any affine R-module in HSP(N). Let B be the reduct of RR to the operations of
A. Since the binary term operations of B are the operations ux+ (1−u)y, u ∈ U , it is clear
that the universe of the subalgebra C ≤ B generated by 0, 1 ∈ B = R is

C = {u · 1 + (1− u) · 0 = u | u ∈ U} = U ⊆ R.

We define I ⊆ C to be an ideal in C if whenever t(x, ȳ) is an (n + 1)-ary term that
depends on x in C and u ∈ I we have tA(u, c̄) ∈ I for any c̄ ∈ Cn. (So, an absorbing element
is nothing more than a 1-element ideal.)

Claim. If I = C − {0}, then I is an ideal of C.

Proof of Claim: We need to show that if p(x̄) = c0x0 + · · ·+ cm−1xm−1 is the interpre-
tation of a term operation of C which depends on all of its variables and d̄ ∈ Cm with at
least one di ∈ I = C − {0} = U − {0}, then p(d̄) ∈ I. This is trivial if m = 1, so we assume
that m > 1. Since p depends on all variables, ci ∈ U − {0} for each i. Now ci, di ∈ U = C
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for all i, so cidi ∈ U for all i. This implies that 0 ≤ cidi for all i. Furthermore, ci 6= 0 for all
i and dj 6= 0 for at least one j. Since R has no nontrivial zero divisors, 0 < cjdj for some j.
We conclude that 0 < Σi<mcidi = p(d̄), so p(d̄) ∈ C − {0} = I. Since p(x̄) and d̄ ∈ Cm were
chosen arbitrarily, the claim is proved.

The relation θ = (I × I) ∪ {(0, 0)} is a congruence of C, since I = C − {0} is an ideal,
and the quotient C/θ has two elements, 0/θ and I/θ. The latter element is a 1-element ideal
(otherwise known as an absorbing element). Thus C/θ is a 2-element idempotent simple
algebra in V with at least one absorbing element. It must be equivalent to either a 2-element
semilattice or a 2-element set. We have assumed that V is minimal, so V must be equivalent
to the variety of sets or the variety of semilattices. Since A is not essentially unary it must
be that V is not equivalent to the variety of sets. But A ∈ V is a nontrivial abelian algebra;
V cannot be equivalent to the variety of semilattices either. This contradiction finishes the
proof. 2

Let V be an exceptional idempotent minimal variety. If V does not satisfy the commu-
tator equation [α, β] = α ∧ β, equivalent to the implication [α, α] = 0 ⇒ α = 0, then some
member of V has a nontrivial abelian congruence. A nontrivial congruence class of an abelian
congruence generates an abelian subalgebra, by idempotence, so a failure of [α, β] = α ∧ β
implies the existence of a nontrivial abelian algebra in the variety. It is our conjecture that
any idempotent abelian algebra is a subreduct of a module. If this conjecture is true, then
Theorem 5.12 can be applied to obtain a contradiction to V being exceptional. To summa-
rize: if every idempotent abelian algebra is a subreduct of a module, then any exceptional
idempotent minimal variety satisfies the commutator equation [α, β] = α∧β. This equation
implies congruence meet semidistributivity. A proof of the conjecture stated in this para-
graph would be a good first step toward proving that there is no exceptional idempotent
minimal variety.

6 Simple Modes

As mentioned in the Introduction, a mode is an idempotent, entropic algebra. Of the nu-
merous articles have been written about modes, most develop specific examples and restrict
attention to only those examples. Hard evidence that the current list of examples is com-
prehensive is lacking. In response to this we initiated in [5] a classification all locally finite
varieties of modes. This project was not completed in [5]. Here is what we accomplished.
We showed that when V is a locally finite variety of modes, then

V = (V1 × V2) ◦ V5

where V1 is locally strongly solvable, V2 is affine and V5 has a semilattice term. (V1 × V2)
denotes the varietal product of V1 and V2 while the previous displayed line means that V is a
Mal’cev product of (V1×V2) and V5. The structure of V2 may be said to be well-understood.
V2 is term equivalent to a variety of affine modules over a finite commutative ring. We
investigated V5 and its non-locally finite analogues in [6] and now these varieties are fairly
well-understood as well. (We know all such varieties up to term equivalence. A mode with a
semilattice term turns out to be a subreduct of a semimodule over a commutative semiring
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satisfying 1+r = 1.) Varieties of the form V1 are not yet well-understood. The classification
of locally finite modes may be completed by (i) classifying mode varieties of the form V =
V1 and (ii) fully describing the nature of the product of the subvarieties V1 × V2 and V5.
This product appears to be a generalization of the regularization of a variety – indeed it is
exactly this in the case of groupoids – and so the algebras in (V1 ×V2) ◦ V5 may turn out to
be ‘generalized P lonka sums of locally solvable algebras’.

Let us give a more explicit description of what the decomposition theorem of [5] means.
Let A be an idempotent algebra and let α ≺ β be a covering pair of congruences on A.
If B is a β-class, then B is a subuniverse. Let B be the subalgebra generated by B. We
define a relative quotient of A to be any algebra of the form B/(α|B). The algebras
in an idempotent variety V which are relative quotients are precisely those algebras whose
universe is a minimal congruence class of an algebra in V. In particular, any simple algebra
in V is a relative quotient. It happens that the relative quotients of a finite mode come in
three types. A relative quotient of a finite mode is term equivalent to

(1 ) a set;

(2 ) a 1-dimensional affine vector space over a finite field; or

(5 ) a 2-element semilattice.

The three-fold classification of relative quotients of finite modes are numbered according
to the tame congruence theory labeling scheme delineated in [4]. Types 3 and 4 do not
appear in modes. Now we are in a position to give a more informative description of the
decomposition V = (V1 × V2) ◦ V5. Say that a finite algebra has type i, for i = 1 , 2 or
5 if all its relative quotients are of type i. Say that a locally finite algebra has type i if
all its finitely generated subalgebras have type i. The main result of [5] is that if V is a
locally finite variety of modes, then the collection of all algebras in V of type i comprises a
subvariety, Vi. Lastly, these subvarieties combine so that V = (V1 × V2) ◦ V5.

A classification of arbitrary mode varieties, including those that are not locally finite,
might begin with a full description of those modes which arise as relative quotients. A
smaller project would be to classify the simple modes. It was this project that led to the
results in this paper. Beginning with the complete characterization of the finite simple
modes (which is an immediate consequence of the results in [5]) it is natural to call a simple
mode standard if it is term equivalent to a 2-element set, a 2-element semilattice or a 1-
dimensional affine vector space. Otherwise, we shall call it non-standard. We shall show
that any non-standard simple mode is a subreduct of a 1-dimensional vector space. This
result, together with Theorem 5.12 implies that the minimal varieties of modes are precisely
those varieties generated by a standard simple mode.

According to remarks made at the beginning of this paper, we only need to consider
simple modes with more than two elements. Clearly every non-standard simple mode has
more than two elements (in fact, has infinitely many). Hence, we must show that every
simple mode of more than two elements is a subreduct of a 1-dimensional vector space.

THEOREM 6.1 If A is a simple mode with more than two elements, then A is a subalgebra
of a simple reduct of a 1-dimensional affine vector space.
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Proof: A simple mode is an idempotent simple algebra and therefore must belong to
one of the three classes described in Theorem 1.1. We shall prove that there is no simple
mode of more than two elements in classes (a) and no simple mode in class (c). This will
prove at least that a simple mode with more than two elements is a subalgebra of a simple
reduct of a module. A little more work will establish that this module is a vector space.

It follows from Lemma 2.1 and our assumption that |A| > 2 that A is not essentially
unary. Let t(x̄) be a term which depends on all n > 1 of its variables. Since A is entropic,
tA : An → A is a homomorphism. If we restrict tA to the diagonal of An, then tA is a
bijection since tA is idempotent. Hence tA : An → A is onto, but not 1-1. It follows that
ker tA is a proper, nonzero congruence of An. If ker tA = ησ where σ is a proper, non-empty
subsequence of n, then tA depends only the variables whose subscripts appear in σ. This is
impossible, since t was chosen so that tA depends on all variables. Hence ker tA 6= ησ for
any σ which means that ker tA is a skew congruence on An. This proves that there is no
simple mode in class (c) of Theorem 1.1.

Now we must show that there is no simple mode with more than two elements in class (a)
of Theorem 1.1. Assume that B is such a mode and that 0 is the unique absorbing element
of B. Choose a 6= b such that a, b ∈ B−{0}. As B is simple we have (0, a) ∈ Cg(a, b), so by
Mal’cev’s congruence generation lemma there exists p(x) ∈ Pol1B such that p(a) = 0 6= p(b)
or p(b) = 0 6= p(a). Without loss of generality we may assume that p(a) = 0 6= p(b). B
is a mode, so p : B → B is a homomorphism. Since p(a) 6= p(b), p is not a constant
homomorphism; the simplicity of B forces p to be a 1-1 homomorphism. Thus, p is an
isomorphism from B to p(B). But 0 ∈ p(B) is clearly an absorbing element for p(B) since it
is an absorbing element for B. Since a 7→ 0 under the isomorphism p : B→ p(B), it follows
that a is an absorbing element for B. Hence 0 and a are distinct absorbing elements for B.
This is impossible for algebras in class (a) of Theorem 1.1.

To finish the proof of the theorem, we must show that if C is a simple mode which is a
subalgebra of a simple reduct of a module, then C is in fact a subalgebra of a simple reduct
of a vector space. From Theorem 3.8, C is a subalgebra of a simple algebra Ĉ ∈ V(C)
and 〈Ĉ ; p(x, y, z)〉 is a simple affine module. Thus Ĉ is a simple (x − y + z)-reduct
of a 1-dimensional vector space. The fundamental operations of Ĉ are idempotent and
commute with themselves, since V(C) is a variety of modes. The operation p(x, y, z) is
idempotent, commutes with itself and all the fundamental operations of C by Lemma 3.7.
Hence 〈Ĉ ; p(x, y, z)〉 is an affine module which is at the same time a mode. If we assume
that 〈Ĉ ; p(x, y, z)〉 is a faithful R-module (which we may assume), then R is a commutative
ring. (For when R acts faithfully on 〈Ĉ ; p(x, y, z)〉 and r, s ∈ R, then the affine module
operations r(x) + (1 − r)(y) and s(x) + (1 − s)(y) commute iff rs = sr.) It is well-known
that any simple (affine) module over a commutative ring is a 1-dimensional vector space, so
this completes our proof. 2

The simple modes of the form Â are either 1-dimensional affine vector spaces or they are
simple, proper (x − y + z)-reducts of 1-dimensional affine vector spaces. By Theorem 5.5,
the corresponding field must have a unit interval. By Theorem 5.10, the field must have a
strongly archimedean partial order. We obtain the following corollary to these theorems.

COROLLARY 6.2 If A is a non-standard simple mode, then A is a subalgebra of a simple
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mode Â ∈ V(A) where Â is a proper (x−y+z)-reduct of a 1-dimensional affine vector space
over a strongly archimedean ordered field 〈F;≤〉. If t(x̄) = Σaixi is the affine representation
of a term of Â, then 0 ≤ ai ≤ 1 for each i and Σai = 1. 2

The important open question that concerns us most in this section is:

Question: Which fields have a strongly archimedean partial ordering?

This question must be answered in order to classify the non-standard simple modes.
It may be that any strongly archimedean partial ordering of a field can be extended to a
total ordering. If this is so, then the answer to the previous question is “the subfields of
the real numbers” since, as was shown by Hilbert, any totally ordered archimedean ring is
isomorphic to a subring of the real numbers. One can show fairly easily that to prove the
statement “If a field F has a strongly archimedean partial ordering, then F is isomorphic to
a subfield of the real numbers”, it suffices to prove the statement when F is a subfield of the
complex numbers. If every field with a strongly archimedean partial ordering is isomorphic
to a subfield of the real numbers, then every nonstandard simple mode is a subreduct of a
1-dimensional affine vector space over the real numbers.

Theorem 5.12 implies that a non-standard simple mode does not generate a minimal
variety. This has the following consequence.

COROLLARY 6.3 If V is a minimal variety of modes, then V is term equivalent to the
variety of sets, the variety of semilattices or a variety of affine vector spaces. 2
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