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Congruence join semidistributivity is equivalent
to a congruence identity

KEITH A. KEARNES

Abstract. We show that a locally finite variety is congruence join semidistributive if and only if it satisfies a
congruence identity that is strong enough to force join semidistributivity in any lattice.

1. Introduction

Thejoin semidistributive lawor lattices is the implication
aVB=aVvVy = aVvp=aV(BAY).

Recursively define lattice words in the variables8 andy by g% = g,y = y, gt =
B A (aVvyh),andy™t =y A (@ v 7). A result of dnsson and Rival in [6] implies
that any finite lattice satisfying the join semidistributive law satisfies one of the weakened
distributive laws:

aVvPBAry)=(@VvBHA@Vy"), E":

and that any lattice that satisfies soifi& satisfies the join semidistributive law. In this
paper we show that ¥ is a locally finite variety, then the congruence lattices of members
of V are congruence join semidistributive if and only if these congruence lattices Fatisfy
for some fixedh.

Join semidistributivity and the dual property, meet semidistributivity, play importantroles
in the classification of varieties according to congruence properties. This is best understood
from the viewpoint of commutator theory. Inthe nicestsituations, if one restricts an algebra’s
operations to a block of an abelian congruence, then those operations have a representation
that is linear with respect to some abelian group. The commutator which is used to define
this concept of abelianness is linked to congruence meet semidistributivity by the fact proved
in [11] that a variety omits abelian congruences if and only if the variety is congruence meet
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semidistributive. A different concept of “abelianness”, called rectangularity, is analyzed
in [9]. If one restricts an algebra’s operations to a block of a self-rectangulating tolerance,
then those operations have a representation that is linear with respect to some semilattice. It
is proved in [9] that a variety omits self-rectangulating tolerances if and only if the variety
satisfies a nontrivial congruence identity. It is also shown that congruence join semidistribu-
tivity is strong enough to force the omission of abelian congruences and self-rectangulating
tolerances. Thus, it is plausible that a variety is congruence join semidistributive precisely
when its members have no abelian congruences and no self-rectangulating tolerances. In
other words, it is plausible that a variety is congruence join semidistributive if and only

if it is congruence meet semidistributive and satisfies a nontrivial congruence identity. In
this paper we prove this statement for locally finite varieties. We also resolve the following
questions about locally finite varieties:

(1) (D.Hobbyand R. McKenzie, page 143 of [5]) If the finite algebras in a locally finite
variety are congruence join semidistributive, must all algebras be congruence join
semidistributive? (Answer: Yes.)

(2) (G.C#dlIi,[2]) Cancongruence join semidistributivity be characterized by a Mal'tsev
condition? (Answer: Yes, for locally finite varieties.)

In addition to these new results, Theorem 2.4 augments earlier results in [7] about congru-
ence identities in locally finite varieties.

2. Bounding the length of a herringbone

LetL be a lattice. By derringbonein L we mean a subset of three descending chains
{o'}, {B%Y, {y% 1} in L where{o’} U {B%} and{a’} U {y%*1} are sublattices df ordered
as in Figure 1.
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Figure 1 A Herringbone
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In other words, a herringbone is a partial sublatticé pbrdered as in Figure 1, with

(’3) Ol2i+1 /\}32i — ,82i+2 062i+2\/,32i — O[Zi and
()/) OlZi+2 A y2i+1 — 7/2i+3' a2i+3 V. y2i+1 — OlZi+1.

If there are infinitely many distinai’s, then we will say that théengthof the herringbone
is co. Otherwise, théengthof the herringbone is the supremum of the supersckigtsch
thata® > ol > ... > ok, (Itis easy to see froni8) and(y) that if somea* = o*t1
thena* = okt = k2 = ... ) Our first goal is to prove that if a locally finite variety
omits typesl and5, then there is some positive integérwhich bounds the length of any
herringbone that appears in the congruence lattice of a memBeér ®he proof requires
tame congruence theory, and the reader is referred to [5] for the details of the theory.
Thennotatiom =4 b willbe used to mean thatis an equivalence relation ang b) € 6.
Recall from [1] that ifA is a finite algebra an8l and6 are congruences @f for which
8§ < 0 in Con(A), then a two-element s¢®, 1} is a (8, 8)-subtraceif (0,1) € 6 — § and
{0, 1} is a subset of &, #)-minimal set.

DEFINITION 2.1. (From [7].) LetA be a finite algebra with congruencgés< 6. Let
K = Int[$, 6] be the two-element interval in CoA) determined by these congruences. If
f andg are terms ofA, then we will use the notation

fx1, ..., x0) Ak g(x1, ..., Xp)

to mean that whenevdD, 1} is a (8, 6)-subtrace, therf (x1, ..., x,) =5 g(x1, ..., X,)
holds if all x; belong to{0, 1}.

If « < B are congruences ok and/ = Int[«, 8], then we will write f(X) ~; g(X)
to mean thatf (x) ~x g(x) holds wheneveK is a two-element subinterval ¢f We call
equations of the typg ~; g local equations

The next two lemmas have slightly different hypotheses than Lemmas 3.2 and 3.4 of [7],
but the proofs are similar.

LEMMA 2.2. Let A be a finite algebra for whichyp{A} C {2, 3, 4}. Assume that
Con(A) has a sublattice isomorphic to the pentagon, with congruedeesg, «.8, t}
labeled as in the following figure.
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Letl = Int[8, ] andJ = Int[e, B]. If A satisfies the local equation&x, y, y) ~; x and
f(x,y,y) =; x, thenA satisfies both of the local equations

f,y,x)~;x and f(x,x,y) =~y x.

Proof. It is enough to prove that if (x, y, y) ~; x and f(x, y, y) ~; x hold, then
f(x,x,y) ~; x holds. The same argument appliedft@x, y, z) = f(x, z, y) shows that
fGy,y)=pxandf(x,y,y) ~y ximply f(x,y,x) ~; x.

Assume to the contrary that(x, y, y) ~; x and f (x, y, y) ~; x while f(x, x, y) %,

x. Sincef(x, x,y) %, x, there exist a two-element subintenil= Int[§, 6] of J, and
a (8, 0)-subtracg0, 1} such thatw = (0, 0, 1) #£5 0. We shall derive a contradiction to
this.

Assume that ty@,0) = 4. The 0-block containing 0 and 1 is connected by a
8-closed preorder that is compatible with all operationé&pfvhich has the property that
distinct elements of a two-element subtrace are comparable. (See Theorem 5.26 of [5]).
So, if {x,y} = {0, 1}, then f(x,x, x) and f(x, y, y) are comparable elements of this
0-block. The elemenf (x, x, y) is in the interior of the interval determined by(x, x, x)
and f(x, y, y). Forus,f(x, x,x) =5 x =5 f(x,y,y),s0we deduce that(x, x, y) =5 x
aswell. Thisleadste = f(0, 0, 1) =5 0, whichis false. Itmustbe thattyf 0) € {2, 3}.

Continue to assume th@d, 1} is a (8, 0)-subtrace for whichw = f(0,0,1) #s; O.
Let U be a(é, 8)-minimal set which has &, 6)-trace N containing 0 and 1. Since =
f(0,0,1) =4 f(0,0,0) =5 0,wehavew, 0) € 6—6. Sincetyfs, ) € {2, 3}, Lemmad4.7
of [10] applies to show that there is an idempotent unary polynossath that(A) = U
and(e(w), e(0)) = (e(w), 0) & 8.

Sincea < § < 0 < B < 1, there is a chain of congruences

O=A <A <" <A=T

which containg. In any such chain, each intend} = Int[A;, 1;1] is contained in either
I or J. Thus, the hypotheses of the lemma guarantee that we havey, y) ~, x for
eachi. Let B andT denote the body and tail @f. By Claim 3.1 of [7], the facts that
typ(s, 0) € {2, 3, 4} andInt[§, 0] is the critical interval of the pentagdn, v, 8, 6, T} imply
that there is a congruenézon A such that

() Qis the largest congruence énsatisfyingQ|y € B2 U T2,
(i) BisaQ|y-block, and
(i) 6 <Qandy £ Q.

Sinceg =60 < Q,y £ Q,andy <t = A, there is ani such that;|y € B2U T2 while
hivily € BZUTZ

Since ;41 is connected modula; by (A;, A;+1)-traces (Theorem 2.8 of [5]);
B?UT?andr; 1 € B?U T?, we see that there is.;, A;1)-traceM such thatM N B #
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@ # MNT. Choosé € MNBand:t € MNT. We cannothavé, t) ¢ A;, sincex; does not
connectB to 7', so{b, t} is a(A;, A;+1)-subtrace. From the local equatigiix, y, y) ~, x
we getf(b,t,t) =), b, soef(b,t,t) =, e(b) = b € B. (The polynomial was fixed
before the previous paragraph.) SinBeis an Q2|y-block and 0b € B, we get that
ef(0,t,t) =q ef (b, t,t) =q b, s0ef(0,t,t) € B. Lemma 2.2 of [8] shows that, for any
polynomial p(x1, ..., x,) € Pol(A|y), if z is in the tail ofU andp(z,...,t) € B, then
p@lu,...,0y) < 5. Applying this fact to the binary polynomialf (O, x, y) we deduce
fromef(0,t,1) € B thatef(0,60]|y,0|y) C §. But this leads to

e(w) =¢ef(0,0,1) =5 ¢f(0,0,0) =5 ¢(0) =0,

which contradicts our earlier conclusion ti{atw), 0) & 3. O

LEMMA 2.3. Let A be a finite algebra for whichyp{A} C {2, 3, 4}. Assume that
Con(A) has a sublattice isomorphic to the pentagon, labeled as in Leththd et I =
Int[8, ] andJ = Int[«, B]. If A satisfies the local equations

f.y.x)=rx, flx,y,x)~;x, and f(x,x,y)~yx,

thenA satisfies the local equatiofi(x, y, y) ~; x.

Proof. Assume not. Sincé¢ (x, y, y) #; x, there exist a two-element subintervéal=
Int[§, 0] of J, and a(8, #)-subtracg0, 1} such thatw = f(0, 1, 1) #5 0. We shall derive
a contradiction to this.

Assume that ty@, ) = 4. Let U be a(é, 8)-minimal set containind0, 1}. Since
(w, 0) € 6 — § there is a unary polynomia&l such thatc(A) = U and(k(w), k(0)) & §
(Theorem 2.8(4) of [5]). Ik(@|y) C 8, then sincef (x, x, x) ~; x we get that

kf(0,0,0) =5 k(0) =5 k(1) =5 kf (1,1, 1).

The elementkf (0, 1, 1) is between the comparable elemehfg0, 0,0) andkf (1, 1, 1)
in the (8, 6)-preorder of thed-block of 0. The elementgf (0, 0,0) andkf (1, 1, 1) are
s-related, sak(w) = kf(0,1,1) =5 kf(0,0,0) =5 k(0), contrary to the choice af.
Consequently |y is a permutation. In this situation, letbe an idempotent iterate &f
The polynomiak has the properties(A) = U and(e(w), e(0)) = (e(w),0) € 6 — §.

Iftyp (s, 0) € {2, 3}, then Lemma 4.7 of [10] guarantees the existence of an idempotent
unary polynomiak with the same propertiezi(A) = U and(e(w), e(0)) = (e(w), 0) €
6 —34.

The local equatiorf (x, x, y) ~; x ensures thatf (0, 0, 1) =5 ¢(0) = 0, and the choice
of w together with the properties established dansure thatf (0, 1, 1) = e(w) #;s O.
This shows that the polynomiaf (0, x, 1) satisfiesef (0,0|y, 1) Z 8, soef(0,x, 1) isa
permutation otU.
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As in the proof of Lemma 2.2, there exigts = Int[A;, A;+1], a two-element subinterval
of either! or J, for which;|y € B?UT?andx;41|ly € B>UT? whereB is the body and
T isthe tail ofU. Asinthat proof, thereis &.;, A;;1)-subtracdb, ¢t} with (b,1) € (BxT).
The local equatiory (x, y, x) ~k, x forcesef (b, t,b) =;, b € B. Sincex;|y € B2 U T?
this means thatf (b,t,b) € B. Butb,0,1 € B and B is anQ|y-block (where is as
defined in the proof of Lemma 2.2), so

ef(0,1,1) =g ef (b,1,b) =g b € B.

Thusef (0, x, 1) mapst € T into the bodyB. No polynomial permutation of/ can do
this, so we have contradicted the conclusion of the previous paragraph. O

THEOREM 2.4. LetV be a locally finite variety. The following are equivalent.

(1) V satisfies a nontrivial congruence identity.

(2) typ{V} < {2,3,4}.

(3) There is a positive integédr and 3-ary termsdy, . . ., dok+1, €0, - . ., €2¢+1, p Such
that V satisfies the following equations:

() do(x,y,2) =~ p(x,y,2) = eg(x,y,2);
(i) di(x,y,y) ~dita(x, y, y) ande; (x, x, y) ~ ei1(x, x, y) for eveni;
(i) di(x,x,y) ~diy1(x,x,y),di(x,y,x) ~diy1(x, y, x),
ei(x,y,y) ®eip1(x, y,y) ande;(x, y, x) ~ ei1(x, y, x) for oddi;
(iv) doxy1(x,y,z) ~x andegyi1(x,y,z) =~ z.

(4) There is a positive intege¥ such that no finite algebra i has a herringbone of
length> N in its congruence lattice.

(5) There is a positive integel such that) satisfies¥ = gM+1 as a congruence
identity. (See the Introduction for the definitiongf.)

(6) There is a lattice identity whichV satisfies as a congruence identity, but which
fails in the latticeD».

Figure 2 Do
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Proof. The equivalence aft) and(2) is proved in Theorem 3.7 of [7]. The equivalence
of (2) and(3)’ is proved in Theorem 9.8 of [5], whe(8)' is the same a&3) with subscripts
chosen differently. We will prové2)& (3) — (4) — (5) — (6). The implication
(6) = (1) is trivial.

We start with the proof 0f2)& (3) — (4). We assumé&?) as a hypothesis so that we
are free to use Lemmas 2.2 and 2.3 as needed; otherwise we are simply arguiidy that
implies (4). Suppose thah € V is finite, and that CofA) has a long herringbone labeled
with ’s, 8’s andy’s as in the following diagram.

o
ﬂO
1
82
3
ﬂ4
o V5
86

CLAIM 2.5. For eachO < j < k and eachu > 2j the local equation

dor—2j(x,y,y) g x

holds fork = Int[e**1, o*].

By (3)(ii) and (3)(iv), the algebréa satisfies the equations

de(x» Y, y) ~ d2k+1(x’ Y, y) and d2k+1(x’ Y, Z) ~oXx.

In particular,da, (x, y, y) =k x for each intervalk in Con(A), so the claim holds when
j=0.

Suppose that the claim has been established for gand allx > 2. We argue that the
claim holdsforj +1andallv > 2(j +1) = 2j + 2. Foreven > 2j + 2, the congruences
{aV=2, av"1 v, B¥~2, g7} form a pentagon in Cai). The inductive assumption implies
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thatdox—2;(x, y, y) 2 x holds forl = Int[e’~1, «*~2] anddy—2;(x, y, y) ~; x holds
for J = Int[a?, «*~1], sincev, v — 1 > 2.

,BU_Z o

51}
The hypotheses of Lemma 2.2 are met, so

dy—2j(x,x,y) =y x and dy_2;(x,y,x) ~; x

hold for J = Int[a”, «*~1] whenv is even.
By (3)(iii), A satisfiesdy—2;—1(x,x,y) &~ day—2i(x,x,y) andday_2i—1(x,y,x) ~
dok—2i(x,y, x), SO

dok—pi—1(x,x,y) =5 x and dy_pi_1(x,y,x) X5 x

whenever/ = Int[a?, «’"1] andv > 2j + 2 is even. This establishes the hypotheses of
Lemma 2.3 forf = da_o;_1 With respect to the pentagda’ 1, ¥, a¥*1, yv=1 yv+l
and the intervalg = Int[a?, @’ andJ = Int[a’*1, o]

avfl

yu+l

The conclusion of that lemma is that the local equatign »;—1(x, y, y) &, x holds. By
(3)(ii), A satisfiesdo_pi_2(x, y, y) &~ dox—2i—1(x, y, y), hencedoy_oi_2(x,y,y) ~; x
whereJ = Int[a**1, «’] andv > 2j + 2 is even. This establishes the inductive step of the
proof for everw. The proof for oddv is the same with the roles @¢f andy interchanged.
This proves the claim.

The claim ensures thaly(x, y, y) ~¢ x wheneverk = Int[e*!, %] andu >
2k. Repeating all arguments with (z, y, x) in place ofd;(x, y,z), we also get that
eo(x, x, y) ~k yfor K = Int[a**t1, «*] whenevemn > 2k. SinceA satisfiesip(x, y, z) ~
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p(x,y,2) = ep(x,y,z), this means thap(x, y,y) ~¢ x and p(x,x,y) ~g y for
K = Int[a"*1, o] wheneven > 2k.

We apply Lemma 2.2 one final time usinfx, y,z) = p(x,y, z) and the pentagon
{ot, Tt ot2 g Bu+2) for some evemn > 2k. (For oddu, usey’s in place ofg’s.)

In this situation,/ = Int[a**1, «*] and J = Int[a**?, "] We havep(x, y, y) ~; x
andp(x, y, y) ~; x, so we deduce thai(x, x, y) ~; x according to Lemma 2.2. On the
other hand, we have already shown tpét, x, y) ~; y. Thusx ~; y. Referring to the
definition of~;, we see that this means that there are no subtraagstth— «“t1, and
thereforew”*2 = o*+1 whenevem > 2k. It follows that any herringbone must terminate
ata®+1 or sooner. Hence fav = 2k + 1, Con(A) has no herringbone of length N.

Now we prove that4) — (5). Start with three congruencesg andy, and (as in the
Introduction) defingg® = B, y° = y, gt = BA (e vy™), andy” 1 = y A (@ v 7). Let
o =avpif niseven, and” = a Vv y"if nisodd. Sinced® = g > B A (aVvy?) = g1,
andy? > y1 itis easy to see inductively that

ﬁn-‘rl — /3 A (a v yn) > /3 A (a V. yn-l—l) — 'Bn+27

andy™t1 > y"*+2, Thus theg andy-sequences are descending chains, which forces the
a-sequence to be a descending chain. We claim that

{o" | alln} U {B" | evenn} U {y" | oddn}

is a herringbone. To see this, we must verify conditigfisand(y) from the beginning of
this section:

(ﬁ) OlZi+1 A IBZi — 132i+2 a2i+2 V‘BZi — Ol2i
() a2i+2 A )/2i+1 — 7/2i+3 a2i+3 V. )/2i+1 — 012i+1

To show thaw?*1 A g% = B%+2 note that
BAH2 _ g A (@ v y2 D) = B A g2t < g2t
and (as observed earliggf¥t2 < 2. Thusp%+2 < «%+1 A g%, Conversely,
W2 A B2 = (@ v y2 Y A B < (@ v 2T A = A2,
To show thaw?*2 v g2 = o2  note that
W22y g2 > gy g2 = g2

while @12 < ¢ andp? < a v % = o?%, soa? 12 v % < o%. This establishegs),
and(y) can be established the same way.

It follows that if N bounds the length of any herringbone in any congruence lattice
of a member ofy, then however we choose our original three congruencgsand y,
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the sequences defined above must satidfy= o«V*1 = ¢¥+2 = ... and therefore
pM = gM+1 holds for each > N.

Finally we prove thai5) = (6). Fix N > 2 so thatgV = gN*1is a congruence
identity of V. Let £ be the variety of lattices axiomatized By = gV*1. By the choice of
N, L containsD2 and CorfA) for everyA € V. We now argue thdD; is a splitting lattice
in £. Recall the definition of this concept from [12]: A lattiteis asplitting lattice inL if
there is an identity (theconjugate identitythat is satisfied by € £ if and only if K has
no sublattice isomorphic to. (For example, the pentagon is a splitting lattice in the variety
of all lattices, with conjugate identity equal to the modular law.) It is known thiatig a
finite subdirectly irreducible lattice that is projectivednthenL is a splitting lattice inC.
ClearlyD> is a finite subdirectly irreducible lattice. We argue now thatis projective in
L. For this we need to show that if sorkee £ has a homomorphisip : K — D> onto
D5, then there is a sectiof : Do — K such thatp o ¥ (x) = x onDo.

To constructy from g it will suffice to locatea™ € ¢~ 1(a), * € ¢~ 1(B), andy* ¢
¢~ 1(y) such thaf{a*, B*, y*} generates a sublattid® < K isomorphic toD,. (Refer to
Figure 2 to see which elements Bp are labeledr, 8 andy.) For theng restricts to a
homomorphism fronD onto a generating set f@,, hence an isomorphism froB onto
D», so we can choosg = (¢|p) 1.

Begin by choosingy’ € ¢ (), B/ € ¢ X(B), andy’ € ¢~ 1(y) arbitrarily. It is
possible to modify’ toa” € ¢~ 1() so thair” belongs to the intervaht[8’ A y’, 'V y']
determined by8’ andy’. Simply takex” to be

" =B VYIA@ VB AY.

Next, we would like our eventual choice fai* to be the join ofa* A g* anda™® A y*.
Therefore we replace” by

a* =@ ABYV @@ AY).
It is not hard to check that* € ¢~ (&), a* € Int[g’ A y’, B’ v y'], and
a* =@ AB)YV (@@ AY).

Starting witha™, 8’ = B andy’ = y; we begin our inductive construction of elements
(B = B A (a* v (¥)") and(y)" L =y’ A (@* v (B))"). One can check inductively
that(8')' € ¢~ 1(B) and(y’)! € ¢~ 1(y) forall i, and

B)Y=B)"= )V =)= =a*rp, ©)

and the same holds with in place of8. Since(8)N = (8)V*Land(y)N = (y)N*1,
this process terminates. We tagke = (8)" andy* = (y")N. We claim thaw*, 8*, and
y* generate a sublattice &f isomorphic toD,. To check this we must see that
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() o® eInt[p* Ay*, BV y*];
(i) a*vp* =a*vy*=pg*Vvy*
(i) a* = (@* A B*) V (@* Ay™); and
(V) (@*AB)Vy*=a*V vyt = (@ Ay VB

Itis a consequence @f) thatg’ > B* > o™ A B’. Therefore
AR Za*AB oA AB)=a*AF,

soa*AB* = a*AB’. Similarlya* Ay* = a* Ay’. This shows thata™ A B*) Vv (a* Ay*) =
o*, so (i) holds. We haver* v g* = a* v gV > yN+1 = yN — * and by the same
argument™ v y* > g*. Moreover,

B*Vy = (@ ABHV(@AYT)=a".

This shows that (ii) holds. Sineg* < g* v y* andB* A y* < B/ Ay’ < a*, we get that
(i) holds. To verify (iv), note that

SO(@* AB*)Vy* =a*Vvy* =a*Vv g*Vvy* Similarly (@* Ay*) Vv B* = a* Vv B* Vv y*
Thus,{«*, *, y*} generates a sublattice Kf thaty maps isomorphically ont®,. This
proves thaD; is projective inL. (Remark:D> is not projective in the class of all lattices,
hence not a splitting lattice in this class, since it is not semidistributive. See [12].)
Lete be the splitting equation fdd, in £. By Theorem 9.8 of [5]D2 is hot isomorphic
to a sublattice of CogA) for any finiteA € V. Since each lattice C@A), A finite, is a
member ofL by part (5) of this theorem, it follows thatholds in the congruence lattices
of finite members o¥’. But the satisfaction of any particular congruence identity is a local
property (see [14] or [15]), which means that if the finitely generated algebras satisfy
a congruence identity, then all algebrag/isatisfye as a congruence identity. Thusis a
lattice identity that fails irD2 but is a congruence identity of. O

The result stated in the title of the paper is part of the next theorem.
THEOREM 2.6.Let V be a locally finite variety. The following conditions are

equivalent.

(1) typ{V} < {3, 4}
(2) for someN, V satisfies

aVvVBAy) =@V A@VvyY), EVN :

as a congruence identity.
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(3) Vis congruence join semidistributive.
(4) viscongruence meet semidistributive and satisfies a nontrivial congruence identity.

Proof. As observed in the Introduction, the satisfaction &f implies join semi-
distributivity in any lattice, sq2) — (3). Exercise 6.23.12 of [5] sketches the proof
that congruence join semidistributivity implies congruence meet semidistributivity in any
variety. Thug3) implies the first statement i@). Theorem 9.11 of [5] proves that the finite
algebras irv have join semidistributive congruence lattices if and only if¥p< {3, 4}.
This and Theorem 2.42) — (1) imply that condition(3) of this theorem implies the
second statement in conditiod). Thus(3) = (4). The implication(4) = (1) follows
from Theorems 9.10 and 9.18 of [5]. What remains to show is(that= (2).

Since tydV} C {3, 4} if and only if the finite algebras iV have join semidistribu-
tive congruence lattices, it follows from the result 6hdson and Rival mentioned in the
Introduction that for each finitA € V there is some such that Co(A) satisfiest”:

aVvPBAy)=(@Vvp)A@vy™).

However, theE"’s get weaker as increases, and sindésatisfies the congruence identity
BN = pN+1l (= gN+2 — ...) for someN, it follows that there is a fixedv such that all
finite algebras inV satisfy EV,

av(BAy) =@V A@vy),

as a congruence identity. But the satisfaction of any particular congruence identity is a local
property, so all algebras W satisfy EV as a congruence identity. O

The equivalence ofl) and (3) of this theorem justifies our affirmative answer to the
question of Hobby and McKenzie in the Introduction. This equivalence also explains our
answer to Cedli’s question, since it is shown in Theorem 9.11 of [5] that condition (1) of
this theorem can be characterized by a three-variable Mal’'tsev condition.

For the next corollary, ifC is a class of algebras then G&f) = {Con(A) | A € K} is
the class of congruence lattices of member&pBuliCon(K)) is the class of sublattices
of Con(K), and CONK) is the variety generated by C@6) (i.e., thecongruence variety
of K). We now prove that join semidistributive congruence varieties are determined by the
splitting lattices they contain.

COROLLARY 2.7. Let V and W be locally finite congruence join semidistributive
varieties. The following conditions are equivalent.

(1) CON(V) € CONW).
(2) Any splitting lattice inSub(Con(Viin)) is in Sub(Con(Wiin)).
(3) SukCon(Vsin)) € Sub(Con(Wiin)).
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Proof. (—(2) = —(1)): Assume that some splitting lattiteis embeddable in some
member of CotVsn) but in no member of CoaiVsin). Then the congruence lattices of
members oV, satisfy the conjugate identity far, and so CONW) satisfies this identity.

But CON(V) does not satisfy the conjugate identity sirces CON(V) andL does not
satisfy its own conjugate identity. Thus COR) £ CONW).

(—(3) = —(2)): Assume that3) fails. Let/C be the class of subdirectly irreducible
lattices that are homomorphicimages of lattices in@®@amn(Vsn)), and let R(K) be the class
of subdirect products of memberstof If £ € Sub(Con(Wiin)), then since SutConWin))
is closed under the formation of sublattices and finite products it follows from the subdirect
representation theorem that

Sub(Con(Viin)) € Ps(K) € Sub(Con(Wiin)),

contrary to the assumption thed) fails. ThusXC € Sub(Con(Wkn)), and so there is a
subdirectly irreducible lattice € K — Sub(Con(Wkn)) that is a homomorphic image of
some lattice in SuCon(Vsin)). SinceV is congruence join semidistributive, the lattices in
Con(Vsn) are finite bounded homomorphic images of free lattices (according to Corollary 27
of [3]). The class of finite bounded homomorphic images of free lattices is closed under
the formation of homomorphic images, kois a finite bounded subdirectly irreducible
lattice. By one of the main results of [12], is a splitting lattice. Splitting lattices are
projective in the class of all lattices, $0is a projective homomorphic image of some
lattice in SulgCon(Vsn)). It follows thatL is actually a member of SyGon(Vsin)). This
shows that if(3) fails, then there is a splitting lattide that belongs to Sul€on(Vsin)) but
not to SuConWin)).

(3 = (1)): Ifthe class SuiCon(Vsin)) is contained in the class S(@on(Wkn)), then
the varieties they generate are related in the same way. Since the satisfaction of any given
congruence identity is a local property, the generated varieties argX2G¥d CONW)
respectively. O

ADDITIONAL REMARKS. We showed in Theorem 2.6 that wheney&is congruence
join semidistributive, then the variety CQN) is also join semidistributive. The analogous
remark for meet semidistributivity is not true. The simplest counterexampledsthe
variety of semilattices, which is congruence meet semidistributive but@QpiN the variety
of all lattices (according to [4]). A more surprising example appears in [13]: it is shown
that if V is the Polin product of two copies of the variety of distributive lattices, then
is congruence join and meet semidistributive, GONis join semidistributive (in fact,
satisfiest?), but CONV) is not meet semidistributive. In particular, thiss an example
of a variety that is congruence join semidistributive but has no finite bound on the length of
dual herringbones.

We can produce new congruence identities from the congruence ideftity 1 of
Theorem 2.4 by using ideas from the proof of Theorem 2.6 st a locally finite variety
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with typ{V} C {2,3,4}. If A € Vs finite, then by Theorem 7.7 (3) of [5] the quotient
Con(A)/ 2 ofthe congruence lattice by the solvability congruence is join semidistributive.
Satisfaction of the equatiof¥ = gM+1 s inherited by CofA)/ < from Con(A), so (as

in the proof of Theorem 2.6) there is somesuch that Co(A)/ < satisfiese for all
finite A € V. Thus, any interval in Cai\) defined by are™ failure, Int[a v (B A y), (@ V

BY) A (@ v yM)], is a solvable interval. Sincg ¢ typ{)V}, solvable intervals consist of
permuting congruences. So et(x1,...,x;) ~ w2(x1,...,x;) be any lattice identity
that holds in every lattice of permuting equivalence relations. We produce from this a
(k + 3)-ary congruence identity of expressing the fact that any interval defined byzdh
failure satisfiesv; ~ w>. The identity is constructed as follows. Start with lattice variables
o, B, y, 81, ..., 8. Definepi andy’ as described earlier in the paper. et o v (B Ay)
andv = (a v BY) A (@ v yVN). ThenI = Int[u, v] represents a typical interval defined
by an EN -failure. Lets = v (8; A v). The polynomiak(x) = u Vv (x A v) of the free

lattice generated by, B, y, 81, ..., &} is idempotent and has rande This means that
the wordssy, .. ., &5 represent typical elements of . Thus
w1(8%, ..., 87) ~ wa(8%, ..., 8))

is a lattice equation that holds in a lattice if and onlyif ~ w; holds in all intervals defined
by EV-failures. For large enougN, this identity holds in Co) for all finite A € V,
hence it holds througho. This shows that i’ omits typesl and5, then there is av
such that intervals in congruence lattices definedzByfailures satisfy all identities true
in every lattice of permuting equivalence relations.

But rather than observe that intervals defined?¥failuresare shapedike intervals of
permuting equivalence relations, it is better to observe thatdrentervals of permuting
equivalence relations. Infact, all such intervals are locally solvable (and therefore consist of
permuting congruences, by Theorem 7.12 of [5]). The reason thatthis is true isfthaidif
is infinite and has congruencesp andy, u = a v (B Ay) andv = (@ v V) A (@ v ),
and ifv — u contains a 2-snag, then it is not hard to show that for some finitely generated
subalgebrd < A it is the case that

@lg Vv BB A(ls v (1)) —als Vv (Bls Avip)

contains a 2-snag (the same one). Thus, the valué thfat ensures that intervals of the
formIntfa v (B A y), (@ Vv BY) A (o v yV)] are solvable for finite algebras Wis a value
that ensures that such intervals are locally solvable for infinite algebdasimparticular,
this shows that intervals in Cof) defined by failures of the join semidistributive law are
locally solvable whem\ generates a locally finite variety that omits tydesnd5.
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