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Congruence join semidistributivity is equivalent
to a congruence identity

Keith A. Kearnes

Abstract. We show that a locally finite variety is congruence join semidistributive if and only if it satisfies a
congruence identity that is strong enough to force join semidistributivity in any lattice.

1. Introduction

The join semidistributive lawfor lattices is the implication

α ∨ β = α ∨ γ H⇒ α ∨ β = α ∨ (β ∧ γ ).
Recursively define lattice words in the variablesα, β andγ by β0 = β, γ 0 = γ , βn+1 =
β ∧ (α ∨ γ n), andγ n+1 = γ ∧ (α ∨ βn). A result of J́onsson and Rival in [6] implies
that any finite lattice satisfying the join semidistributive law satisfies one of the weakened
distributive laws:

α ∨ (β ∧ γ ) = (α ∨ βn) ∧ (α ∨ γ n), En :

and that any lattice that satisfies someEn satisfies the join semidistributive law. In this
paper we show that ifV is a locally finite variety, then the congruence lattices of members
of V are congruence join semidistributive if and only if these congruence lattices satisfyEn

for some fixedn.
Join semidistributivity and the dual property, meet semidistributivity, play important roles

in the classification of varieties according to congruence properties. This is best understood
from the viewpoint of commutator theory. In the nicest situations, if one restricts an algebra’s
operations to a block of an abelian congruence, then those operations have a representation
that is linear with respect to some abelian group. The commutator which is used to define
this concept of abelianness is linked to congruence meet semidistributivity by the fact proved
in [11] that a variety omits abelian congruences if and only if the variety is congruence meet
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semidistributive. A different concept of “abelianness”, called rectangularity, is analyzed
in [9]. If one restricts an algebra’s operations to a block of a self-rectangulating tolerance,
then those operations have a representation that is linear with respect to some semilattice. It
is proved in [9] that a variety omits self-rectangulating tolerances if and only if the variety
satisfies a nontrivial congruence identity. It is also shown that congruence join semidistribu-
tivity is strong enough to force the omission of abelian congruences and self-rectangulating
tolerances. Thus, it is plausible that a variety is congruence join semidistributive precisely
when its members have no abelian congruences and no self-rectangulating tolerances. In
other words, it is plausible that a variety is congruence join semidistributive if and only
if it is congruence meet semidistributive and satisfies a nontrivial congruence identity. In
this paper we prove this statement for locally finite varieties. We also resolve the following
questions about locally finite varieties:

(1) (D. Hobby and R. McKenzie, page 143 of [5]) If the finite algebras in a locally finite
variety are congruence join semidistributive, must all algebras be congruence join
semidistributive? (Answer: Yes.)

(2) (G. Cźedli, [2]) Can congruence join semidistributivity be characterized by a Mal’tsev
condition? (Answer: Yes, for locally finite varieties.)

In addition to these new results, Theorem 2.4 augments earlier results in [7] about congru-
ence identities in locally finite varieties.

2. Bounding the length of a herringbone

Let L be a lattice. By aherringbonein L we mean a subset of three descending chains
{αi}, {β2i}, {γ 2i+1} in L where{αi}∪ {β2i} and{αi}∪ {γ 2i+1} are sublattices ofL ordered
as in Figure 1.
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Figure 1 A Herringbone
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In other words, a herringbone is a partial sublattice ofL , ordered as in Figure 1, with

(β) α2i+1 ∧ β2i = β2i+2, α2i+2 ∨ β2i = α2i , and
(γ ) α2i+2 ∧ γ 2i+1 = γ 2i+3, α2i+3 ∨ γ 2i+1 = α2i+1.

If there are infinitely many distinctα’s, then we will say that thelengthof the herringbone
is ∞. Otherwise, thelengthof the herringbone is the supremum of the superscriptsk such
thatα0 > α1 > · · · > αk. (It is easy to see from(β) and(γ ) that if someαk = αk+1

thenαk = αk+1 = αk+2 = · · · .) Our first goal is to prove that if a locally finite varietyV
omits types1 and5, then there is some positive integerN which bounds the length of any
herringbone that appears in the congruence lattice of a member ofV. The proof requires
tame congruence theory, and the reader is referred to [5] for the details of the theory.

Then notationa ≡θ bwill be used to mean thatθ is an equivalence relation and(a, b) ∈ θ .
Recall from [1] that ifA is a finite algebra andδ andθ are congruences ofA for which

δ ≺ θ in Con(A), then a two-element set{0,1} is a 〈δ, θ〉-subtraceif (0,1) ∈ θ − δ and
{0,1} is a subset of a〈δ, θ〉-minimal set.

DEFINITION 2.1. (From [7].) LetA be a finite algebra with congruencesδ ≺ θ . Let
K = Int[δ, θ ] be the two-element interval in Con(A) determined by these congruences. If
f andg are terms ofA, then we will use the notation

f (x1, . . . , xn) ≈K g(x1, . . . , xn)

to mean that whenever{0,1} is a 〈δ, θ〉-subtrace, thenf (x1, . . . , xn) ≡δ g(x1, . . . , xn)

holds if allxi belong to{0,1}.
If α < β are congruences onA andI = Int[α, β], then we will writef (x) ≈I g(x)

to mean thatf (x) ≈K g(x) holds wheneverK is a two-element subinterval ofI . We call
equations of the typef ≈I g local equations.

The next two lemmas have slightly different hypotheses than Lemmas 3.2 and 3.4 of [7],
but the proofs are similar.

LEMMA 2.2. Let A be a finite algebra for whichtyp{A} ⊆ {2,3,4}. Assume that
Con(A) has a sublattice isomorphic to the pentagon, with congruences{σ, γ, α.β, τ }
labeled as in the following figure.
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LetI = Int[β, τ ] andJ = Int[α, β]. If A satisfies the local equationsf (x, y, y) ≈I x and
f (x, y, y) ≈J x, thenA satisfies both of the local equations

f (x, y, x) ≈J x and f (x, x, y) ≈J x.

Proof. It is enough to prove that iff (x, y, y) ≈I x andf (x, y, y) ≈J x hold, then
f (x, x, y) ≈J x holds. The same argument applied tof ′(x, y, z) = f (x, z, y) shows that
f (x, y, y) ≈I x andf (x, y, y) ≈J x imply f (x, y, x) ≈J x.

Assume to the contrary thatf (x, y, y) ≈I x andf (x, y, y) ≈J x while f (x, x, y) 6≈J

x. Sincef (x, x, y) 6≈J x, there exist a two-element subintervalK = Int[δ, θ ] of J , and
a 〈δ, θ〉-subtrace{0,1} such thatw = f (0,0,1) 6≡δ 0. We shall derive a contradiction to
this.

Assume that typ(δ, θ) = 4. The θ -block containing 0 and 1 is connected by a
δ-closed preorder that is compatible with all operations ofA, which has the property that
distinct elements of a two-element subtrace are comparable. (See Theorem 5.26 of [5]).
So, if {x, y} = {0,1}, thenf (x, x, x) andf (x, y, y) are comparable elements of this
θ -block. The elementf (x, x, y) is in the interior of the interval determined byf (x, x, x)
andf (x, y, y). For us,f (x, x, x) ≡δ x ≡δ f (x, y, y), so we deduce thatf (x, x, y) ≡δ x

as well. This leads tow = f (0,0,1) ≡δ 0, which is false. It must be that typ(δ, θ) ∈ {2,3}.
Continue to assume that{0,1} is a 〈δ, θ〉-subtrace for whichw = f (0,0,1) 6≡δ 0.

Let U be a〈δ, θ〉-minimal set which has a〈δ, θ〉-traceN containing 0 and 1. Sincew =
f (0,0,1) ≡θ f (0,0,0) ≡δ 0, we have(w,0) ∈ θ−δ. Since typ(δ, θ) ∈ {2,3}, Lemma 4.7
of [10] applies to show that there is an idempotent unary polynomiale such thate(A) = U

and(e(w), e(0)) = (e(w),0) 6∈ δ.
Sinceα ≤ δ ≺ θ ≤ β ≤ τ , there is a chain of congruences

θ = λ0 ≺ λ1 ≺ · · · ≺ λk = τ

which containsβ. In any such chain, each intervalKi = Int[λi, λi+1] is contained in either
I or J . Thus, the hypotheses of the lemma guarantee that we havef (x, y, y) ≈Ki x for
eachi. Let B andT denote the body and tail ofU . By Claim 3.1 of [7], the facts that
typ(δ, θ) ∈ {2,3,4} andInt[δ, θ ] is the critical interval of the pentagon{σ, γ, δ, θ, τ } imply
that there is a congruence� onA such that

(i) � is the largest congruence onA satisfying�|U ⊆ B2 ∪ T 2,
(ii) B is a�|U -block, and
(iii) θ ≤ � andγ 6≤ �.

Since,λ0 = θ ≤ �, γ 6≤ �, andγ ≤ τ = λk, there is ani such thatλi |U ⊆ B2 ∪ T 2 while
λi+1|U 6⊆ B2 ∪ T 2.

Sinceλi+1 is connected moduloλi by 〈λi, λi+1〉-traces (Theorem 2.8 of [5]),λi ⊆
B2 ∪ T 2 andλi+1 6⊆ B2 ∪ T 2, we see that there is〈λi, λi+1〉-traceM such thatM ∩ B 6=
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∅ 6= M∩T . Chooseb ∈ M∩B andt ∈ M∩T . We cannot have(b, t) 6∈ λi , sinceλi does not
connectB toT , so{b, t} is a〈λi, λi+1〉-subtrace. From the local equationf (x, y, y) ≈Ki x

we getf (b, t, t) ≡λi b, soef (b, t, t) ≡λi e(b) = b ∈ B. (The polynomiale was fixed
before the previous paragraph.) SinceB is an�|U -block and 0, b ∈ B, we get that
ef (0, t, t) ≡� ef (b, t, t) ≡� b, soef (0, t, t) ∈ B. Lemma 2.2 of [8] shows that, for any
polynomialp(x1, . . . , xn) ∈ Pol(A|U), if t is in the tail ofU andp(t, . . . , t) ∈ B, then
p(θ |U , . . . , θ |U) ⊆ δ. Applying this fact to the binary polynomialef (0, x, y) we deduce
from ef (0, t, t) ∈ B thatef (0, θ |U , θ |U) ⊆ δ. But this leads to

e(w) = ef (0,0,1) ≡δ ef (0,0,0) ≡δ e(0) = 0,

which contradicts our earlier conclusion that(e(w),0) 6∈ δ. ¨

LEMMA 2.3. Let A be a finite algebra for whichtyp{A} ⊆ {2,3,4}. Assume that
Con(A) has a sublattice isomorphic to the pentagon, labeled as in Lemma2.2. Let I =
Int[β, τ ] andJ = Int[α, β]. If A satisfies the local equations

f (x, y, x) ≈I x, f (x, y, x) ≈J x, and f (x, x, y) ≈J x,

thenA satisfies the local equationf (x, y, y) ≈J x.

Proof. Assume not. Sincef (x, y, y) 6≈J x, there exist a two-element subintervalK =
Int[δ, θ ] of J , and a〈δ, θ〉-subtrace{0,1} such thatw = f (0,1,1) 6≡δ 0. We shall derive
a contradiction to this.

Assume that typ(δ, θ) = 4. Let U be a〈δ, θ〉-minimal set containing{0,1}. Since
(w,0) ∈ θ − δ there is a unary polynomialk such thatk(A) = U and(k(w), k(0)) 6∈ δ

(Theorem 2.8(4) of [5]). Ifk(θ |U) ⊆ δ, then sincef (x, x, x) ≈J x we get that

kf (0,0,0) ≡δ k(0) ≡δ k(1) ≡δ kf (1,1,1).

The elementkf (0,1,1) is between the comparable elementskf (0,0,0) andkf (1,1,1)
in the 〈δ, θ〉-preorder of theθ -block of 0. The elementskf (0,0,0) andkf (1,1,1) are
δ-related, sok(w) = kf (0,1,1) ≡δ kf (0,0,0) ≡δ k(0), contrary to the choice ofk.
Consequentlyk|U is a permutation. In this situation, lete be an idempotent iterate ofk.
The polynomiale has the propertiese(A) = U and(e(w), e(0)) = (e(w),0) ∈ θ − δ.

If typ(δ, θ) ∈ {2,3}, then Lemma 4.7 of [10] guarantees the existence of an idempotent
unary polynomiale with the same properties:e(A) = U and(e(w), e(0)) = (e(w),0) ∈
θ − δ.

The local equationf (x, x, y) ≈J x ensures thatef (0,0,1) ≡δ e(0) = 0, and the choice
of w together with the properties established fore ensure thatef (0,1,1) = e(w) 6≡δ 0.
This shows that the polynomialef (0, x,1) satisfiesef (0, θ |U ,1) 6⊆ δ, soef (0, x,1) is a
permutation ofU .
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As in the proof of Lemma 2.2, there existsKi = Int[λi, λi+1], a two-element subinterval
of eitherI orJ , for whichλi |U ⊆ B2 ∪T 2 andλi+1|U 6⊆ B2 ∪T 2 whereB is the body and
T is the tail ofU . As in that proof, there is a〈λi, λi+1〉-subtrace{b, t} with (b, t) ∈ (B×T ).
The local equationf (x, y, x) ≈Ki x forcesef (b, t, b) ≡λi b ∈ B. Sinceλi |U ⊆ B2 ∪ T 2

this means thatef (b, t, b) ∈ B. But b,0,1 ∈ B andB is an�|U -block (where� is as
defined in the proof of Lemma 2.2), so

ef (0, t,1) ≡� ef (b, t, b) ≡� b ∈ B.
Thusef (0, x,1) mapst ∈ T into the bodyB. No polynomial permutation ofU can do
this, so we have contradicted the conclusion of the previous paragraph. ¨

THEOREM 2.4. LetV be a locally finite variety. The following are equivalent.

(1) V satisfies a nontrivial congruence identity.
(2) typ{V} ⊆ {2,3,4}.
(3) There is a positive integerk and3-ary termsd0, . . . , d2k+1, e0, . . . , e2k+1, p such

thatV satisfies the following equations:

(i) d0(x, y, z) ≈ p(x, y, z) ≈ e0(x, y, z);
(ii) di(x, y, y) ≈ di+1(x, y, y) andei(x, x, y) ≈ ei+1(x, x, y) for eveni;

(iii) di(x, x, y) ≈ di+1(x, x, y), di(x, y, x) ≈ di+1(x, y, x),
ei(x, y, y) ≈ ei+1(x, y, y) andei(x, y, x) ≈ ei+1(x, y, x) for oddi;

(iv) d2k+1(x, y, z) ≈ x ande2k+1(x, y, z) ≈ z.

(4) There is a positive integerN such that no finite algebra inV has a herringbone of
length> N in its congruence lattice.

(5) There is a positive integerM such thatV satisfiesβM = βM+1 as a congruence
identity. (See the Introduction for the definition ofβn.)

(6) There is a lattice identityε which V satisfies as a congruence identity, but which
fails in the latticeD2.
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Proof. The equivalence of(1) and(2) is proved in Theorem 3.7 of [7]. The equivalence
of (2) and(3)′ is proved in Theorem 9.8 of [5], where(3)′ is the same as(3)with subscripts
chosen differently. We will prove(2)& (3) H⇒ (4) H⇒ (5) H⇒ (6). The implication
(6) H⇒ (1) is trivial.

We start with the proof of(2)& (3) H⇒ (4). We assume(2) as a hypothesis so that we
are free to use Lemmas 2.2 and 2.3 as needed; otherwise we are simply arguing that(3)
implies(4). Suppose thatA ∈ V is finite, and that Con(A) has a long herringbone labeled
with α’s, β ’s andγ ’s as in the following diagram.
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CLAIM 2.5. For each0 ≤ j ≤ k and eachu ≥ 2j the local equation

d2k−2j (x, y, y) ≈K x

holds forK = Int[αu+1, αu].

By (3)(ii) and (3)(iv), the algebraA satisfies the equations

d2k(x, y, y) ≈ d2k+1(x, y, y) and d2k+1(x, y, z) ≈ x.

In particular,d2k(x, y, y) ≈K x for each intervalK in Con(A), so the claim holds when
j = 0.

Suppose that the claim has been established for somej and allu ≥ 2j . We argue that the
claim holds forj +1 and allv ≥ 2(j +1) = 2j +2. For evenv ≥ 2j +2, the congruences
{αv−2, αv−1, αv, βv−2, βv} form a pentagon in Con(A). The inductive assumption implies
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thatd2k−2j (x, y, y) ≈I x holds forI = Int[αv−1, αv−2] andd2k−2j (x, y, y) ≈J x holds
for J = Int[αv, αv−1], sincev, v − 1 ≥ 2j .
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The hypotheses of Lemma 2.2 are met, so

d2k−2j (x, x, y) ≈J x and d2k−2j (x, y, x) ≈J x

hold forJ = Int[αv, αv−1] whenv is even.
By (3)(iii), A satisfiesd2k−2i−1(x, x, y) ≈ d2k−2i (x, x, y) and d2k−2i−1(x, y, x) ≈

d2k−2i (x, y, x), so

d2k−2i−1(x, x, y) ≈J x and d2k−2i−1(x, y, x) ≈J x

wheneverJ = Int[αv, αv−1] andv ≥ 2j + 2 is even. This establishes the hypotheses of
Lemma 2.3 forf = d2k−2i−1 with respect to the pentagon{αv−1, αv, αv+1, γ v−1, γ v+1}
and the intervalsI = Int[αv, αv−1] andJ = Int[αv+1, αv].
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The conclusion of that lemma is that the local equationd2k−2i−1(x, y, y) ≈J x holds. By
(3)(ii), A satisfiesd2k−2i−2(x, y, y) ≈ d2k−2i−1(x, y, y), henced2k−2i−2(x, y, y) ≈J x

whereJ = Int[αv+1, αv] andv ≥ 2j + 2 is even. This establishes the inductive step of the
proof for evenv. The proof for oddv is the same with the roles ofβ andγ interchanged.
This proves the claim.

The claim ensures thatd0(x, y, y) ≈K x wheneverK = Int[αu+1, αu] and u ≥
2k. Repeating all arguments withei(z, y, x) in place of di(x, y, z), we also get that
e0(x, x, y) ≈K y forK = Int[αu+1, αu] wheneveru ≥ 2k. SinceA satisfiesd0(x, y, z) ≈
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p(x, y, z) ≈ e0(x, y, z), this means thatp(x, y, y) ≈K x and p(x, x, y) ≈K y for
K = Int[αu+1, αu] wheneveru ≥ 2k.

We apply Lemma 2.2 one final time usingf (x, y, z) = p(x, y, z) and the pentagon
{αu, αu+1, αu+2, βu, βu+2} for some evenu ≥ 2k. (For oddu, useγ ’s in place ofβ ’s.)
In this situation,I = Int[αu+1, αu] andJ = Int[αu+2, αu+1]. We havep(x, y, y) ≈I x

andp(x, y, y) ≈J x, so we deduce thatp(x, x, y) ≈J x according to Lemma 2.2. On the
other hand, we have already shown thatp(x, x, y) ≈J y. Thusx ≈J y. Referring to the
definition of≈J , we see that this means that there are no subtraces inαu+2 − αu+1, and
thereforeαu+2 = αu+1 wheneveru ≥ 2k. It follows that any herringbone must terminate
atα2k+1 or sooner. Hence forN = 2k + 1, Con(A) has no herringbone of length> N .

Now we prove that(4) H⇒ (5). Start with three congruencesα, β andγ , and (as in the
Introduction) defineβ0 = β, γ 0 = γ, βn+1 = β∧ (α∨γ n), andγ n+1 = γ ∧ (α∨βn). Let
αn = α∨βn if n is even, andαn = α∨γ n if n is odd. Sinceβ0 = β ≥ β∧ (α∨γ 0) = β1,
andγ 0 ≥ γ 1, it is easy to see inductively that

βn+1 = β ∧ (α ∨ γ n) ≥ β ∧ (α ∨ γ n+1) = βn+2,

andγ n+1 ≥ γ n+2. Thus theβ andγ -sequences are descending chains, which forces the
α-sequence to be a descending chain. We claim that

{αn | all n} ∪ {βn | evenn} ∪ {γ n | oddn}
is a herringbone. To see this, we must verify conditions(β) and(γ ) from the beginning of
this section:

(β) α2i+1 ∧ β2i = β2i+2, α2i+2 ∨ β2i = α2i

(γ ) α2i+2 ∧ γ 2i+1 = γ 2i+3, α2i+3 ∨ γ 2i+1 = α2i+1.

To show thatα2i+1 ∧ β2i = β2i+2, note that

β2i+2 = β ∧ (α ∨ γ 2i+1) = β ∧ α2i+1 ≤ α2i+1,

and (as observed earlier)β2i+2 ≤ β2i . Thusβ2i+2 ≤ α2i+1 ∧ β2i . Conversely,

α2i+1 ∧ β2i = (α ∨ γ 2i+1) ∧ β2i ≤ (α ∨ γ 2i+1) ∧ β = β2i+2.

To show thatα2i+2 ∨ β2i = α2i , note that

α2i+2 ∨ β2i ≥ α ∨ β2i = α2i ,

while α2i+2 ≤ α2i andβ2i ≤ α ∨ β2i = α2i , soα2i+2 ∨ β2i ≤ α2i . This establishes(β),
and(γ ) can be established the same way.

It follows that if N bounds the length of any herringbone in any congruence lattice
of a member ofV, then however we choose our original three congruencesα, β andγ ,
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the sequences defined above must satisfyαN = αN+1 = αN+2 = · · · , and therefore
βM = βM+1 holds for eachM > N .

Finally we prove that(5) H⇒ (6). Fix N > 2 so thatβN = βN+1 is a congruence
identity ofV. LetL be the variety of lattices axiomatized byβN = βN+1. By the choice of
N , L containsD2 and Con(A) for everyA ∈ V. We now argue thatD2 is a splitting lattice
in L. Recall the definition of this concept from [12]: A latticeL is asplitting lattice inL if
there is an identityε (theconjugate identity) that is satisfied byK ∈ L if and only if K has
no sublattice isomorphic toL . (For example, the pentagon is a splitting lattice in the variety
of all lattices, with conjugate identity equal to the modular law.) It is known that ifL is a
finite subdirectly irreducible lattice that is projective inL, thenL is a splitting lattice inL.
ClearlyD2 is a finite subdirectly irreducible lattice. We argue now thatD2 is projective in
L. For this we need to show that if someK ∈ L has a homomorphismϕ : K → D2 onto
D2, then there is a sectionψ : D2 → K such thatϕ ◦ ψ(x) = x onD2.

To constructψ from ϕ it will suffice to locateα∗ ∈ ϕ−1(α), β∗ ∈ ϕ−1(β), andγ ∗ ∈
ϕ−1(γ ) such that{α∗, β∗, γ ∗} generates a sublatticeD ≤ K isomorphic toD2. (Refer to
Figure 2 to see which elements ofD2 are labeledα, β andγ .) For thenϕ restricts to a
homomorphism fromD onto a generating set forD2, hence an isomorphism fromD onto
D2, so we can chooseψ = (ϕ|D)−1.

Begin by choosingα′ ∈ ϕ−1(α), β ′ ∈ ϕ−1(β), andγ ′ ∈ ϕ−1(γ ) arbitrarily. It is
possible to modifyα′ toα′′ ∈ ϕ−1(α) so thatα′′ belongs to the intervalInt[β ′ ∧γ ′, β ′ ∨γ ′]
determined byβ ′ andγ ′. Simply takeα′′ to be

α′′ = (β ′ ∨ γ ′) ∧ (α′ ∨ (β ′ ∧ γ ′)).

Next, we would like our eventual choice forα∗ to be the join ofα∗ ∧ β∗ andα∗ ∧ γ ∗.
Therefore we replaceα′′ by

α∗ = (α′′ ∧ β ′) ∨ (α′′ ∧ γ ′).

It is not hard to check thatα∗ ∈ ϕ−1(α), α∗ ∈ Int[β ′ ∧ γ ′, β ′ ∨ γ ′], and

α∗ = (α∗ ∧ β ′) ∨ (α∗ ∧ γ ′).

Starting withα∗, β ′ = β ′
0 andγ ′ = γ ′

0 we begin our inductive construction of elements
(β ′)n+1 = β ′ ∧ (α∗ ∨ (γ ′)n) and(γ ′)n+1 = γ ′ ∧ (α∗ ∨ (β ′)n). One can check inductively
that(β ′)i ∈ ϕ−1(β) and(γ ′)i ∈ ϕ−1(γ ) for all i, and

(β ′) = (β ′)0 ≥ (β ′)1 ≥ (β ′)2 ≥ · · · ≥ α∗ ∧ β ′, (†)

and the same holds withγ in place ofβ. Since(β ′)N = (β ′)N+1 and(γ ′)N = (γ ′)N+1,
this process terminates. We takeβ∗ = (β ′)N andγ ∗ = (γ ′)N . We claim thatα∗, β∗, and
γ ∗ generate a sublattice ofK isomorphic toD2. To check this we must see that
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(i) α∗ ∈ Int[β∗ ∧ γ ∗, β∗ ∨ γ ∗];
(ii) α∗ ∨ β∗ = α∗ ∨ γ ∗ = β∗ ∨ γ ∗;

(iii) α∗ = (α∗ ∧ β∗) ∨ (α∗ ∧ γ ∗); and
(iv) (α∗ ∧ β∗) ∨ γ ∗ = α∗ ∨ β∗ ∨ γ ∗ = (α∗ ∧ γ ∗) ∨ β∗.

It is a consequence of(†) thatβ ′ ≥ β∗ ≥ α∗ ∧ β ′. Therefore

α∗ ∧ β ′ ≥ α∗ ∧ β∗ ≥ α∗ ∧ (α∗ ∧ β ′) = α∗ ∧ β ′,

soα∗∧β∗ = α∗∧β ′. Similarlyα∗∧γ ∗ = α∗∧γ ′. This shows that(α∗∧β∗)∨(α∗∧γ ∗) =
α∗, so (iii) holds. We haveα∗ ∨ β∗ = α∗ ∨ βN ≥ γN+1 = γN = γ ∗, and by the same
argumentα∗ ∨ γ ∗ ≥ β∗. Moreover,

β∗ ∨ γ ∗ ≥ (α∗ ∧ β∗) ∨ (α ∧ γ ∗) = α∗.

This shows that (ii) holds. Sinceα∗ ≤ β∗ ∨ γ ∗ andβ∗ ∧ γ ∗ ≤ β ′ ∧ γ ′ ≤ α∗, we get that
(i) holds. To verify (iv), note that

(α∗ ∧ β∗) ∨ γ ∗ ≥ (α∗ ∧ β∗) ∨ (α∗ ∧ γ ∗) = α∗,

so(α∗ ∧ β∗)∨ γ ∗ ≥ α∗ ∨ γ ∗ = α∗ ∨ β∗ ∨ γ ∗. Similarly (α∗ ∧ γ ∗)∨ β∗ ≥ α∗ ∨ β∗ ∨ γ ∗.
Thus,{α∗, β∗, γ ∗} generates a sublattice ofK thatϕ maps isomorphically ontoD2. This
proves thatD2 is projective inL. (Remark:D2 is not projective in the class of all lattices,
hence not a splitting lattice in this class, since it is not semidistributive. See [12].)

Let ε be the splitting equation forD2 in L. By Theorem 9.8 of [5],D2 is not isomorphic
to a sublattice of Con(A) for any finiteA ∈ V. Since each lattice Con(A), A finite, is a
member ofL by part (5) of this theorem, it follows thatε holds in the congruence lattices
of finite members ofV. But the satisfaction of any particular congruence identity is a local
property (see [14] or [15]), which means that if the finitely generated algebras satisfyε as
a congruence identity, then all algebras inV satisfyε as a congruence identity. Thus,ε is a
lattice identity that fails inD2 but is a congruence identity ofV. ¨

The result stated in the title of the paper is part of the next theorem.

THEOREM 2.6. Let V be a locally finite variety. The following conditions are
equivalent.

(1) typ{V} ⊆ {3,4}.
(2) for someN , V satisfies

α ∨ (β ∧ γ ) = (α ∨ βN) ∧ (α ∨ γN), EN :

as a congruence identity.
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(3) V is congruence join semidistributive.
(4) V is congruence meet semidistributive and satisfies a nontrivial congruence identity.

Proof. As observed in the Introduction, the satisfaction ofEn implies join semi-
distributivity in any lattice, so(2) H⇒ (3). Exercise 6.23.12 of [5] sketches the proof
that congruence join semidistributivity implies congruence meet semidistributivity in any
variety. Thus(3) implies the first statement in(4). Theorem 9.11 of [5] proves that the finite
algebras inV have join semidistributive congruence lattices if and only if typ{V} ⊆ {3,4}.
This and Theorem 2.4(2) H⇒ (1) imply that condition(3) of this theorem implies the
second statement in condition(4). Thus(3) H⇒ (4). The implication(4) H⇒ (1) follows
from Theorems 9.10 and 9.18 of [5]. What remains to show is that(1) H⇒ (2).

Since typ{V} ⊆ {3,4} if and only if the finite algebras inV have join semidistribu-
tive congruence lattices, it follows from the result of Jónsson and Rival mentioned in the
Introduction that for each finiteA ∈ V there is somen such that Con(A) satisfiesEn:

α ∨ (β ∧ γ ) = (α ∨ βn) ∧ (α ∨ γ n).
However, theEn’s get weaker asn increases, and sinceV satisfies the congruence identity
βN = βN+1 (= βN+2 = · · ·) for someN , it follows that there is a fixedN such that all
finite algebras inV satisfyEN ,

α ∨ (β ∧ γ ) = (α ∨ βN) ∧ (α ∨ γN),
as a congruence identity. But the satisfaction of any particular congruence identity is a local
property, so all algebras inV satisfyEN as a congruence identity. ¨

The equivalence of(1) and(3) of this theorem justifies our affirmative answer to the
question of Hobby and McKenzie in the Introduction. This equivalence also explains our
answer to Cźedli’s question, since it is shown in Theorem 9.11 of [5] that condition (1) of
this theorem can be characterized by a three-variable Mal’tsev condition.

For the next corollary, ifK is a class of algebras then Con(K) = {Con(A) | A ∈ K} is
the class of congruence lattices of members ofK, Sub(Con(K)) is the class of sublattices
of Con(K), and CON(K) is the variety generated by Con(K) (i.e., thecongruence variety
of K). We now prove that join semidistributive congruence varieties are determined by the
splitting lattices they contain.

COROLLARY 2.7. Let V and W be locally finite congruence join semidistributive
varieties. The following conditions are equivalent.

(1) CON(V) ⊆ CON(W).
(2) Any splitting lattice inSub(Con(Vfin)) is in Sub(Con(Wfin)).
(3) Sub(Con(Vfin)) ⊆ Sub(Con(Wfin)).
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Proof. (¬(2) H⇒ ¬(1)): Assume that some splitting latticeL is embeddable in some
member of Con(Vfin) but in no member of Con(Wfin). Then the congruence lattices of
members ofWfin satisfy the conjugate identity forL , and so CON(W) satisfies this identity.
But CON(V) does not satisfy the conjugate identity sinceL ∈ CON(V) andL does not
satisfy its own conjugate identity. Thus CON(V) 6⊆ CON(W).

(¬(3) H⇒ ¬(2)): Assume that(3) fails. LetK be the class of subdirectly irreducible
lattices that are homomorphic images of lattices in Sub(Con(Vfin)), and let Ps(K)be the class
of subdirect products of members ofK. If K ⊆ Sub(Con(Wfin)), then since Sub(Con(Wfin))

is closed under the formation of sublattices and finite products it follows from the subdirect
representation theorem that

Sub(Con(Vfin)) ⊆ Ps(K) ⊆ Sub(Con(Wfin)),

contrary to the assumption that(3) fails. ThusK 6⊆ Sub(Con(Wfin)), and so there is a
subdirectly irreducible latticeL ∈ K − Sub(Con(Wfin)) that is a homomorphic image of
some lattice in Sub(Con(Vfin)). SinceV is congruence join semidistributive, the lattices in
Con(Vfin)are finite bounded homomorphic images of free lattices (according to Corollary 27
of [3]). The class of finite bounded homomorphic images of free lattices is closed under
the formation of homomorphic images, soL is a finite bounded subdirectly irreducible
lattice. By one of the main results of [12],L is a splitting lattice. Splitting lattices are
projective in the class of all lattices, soL is a projective homomorphic image of some
lattice in Sub(Con(Vfin)). It follows thatL is actually a member of Sub(Con(Vfin)). This
shows that if(3) fails, then there is a splitting latticeL that belongs to Sub(Con(Vfin)) but
not to Sub(Con(Wfin)).

((3) H⇒ (1)): If the class Sub(Con(Vfin)) is contained in the class Sub(Con(Wfin)), then
the varieties they generate are related in the same way. Since the satisfaction of any given
congruence identity is a local property, the generated varieties are CON(V) and CON(W)

respectively. ¨

ADDITIONAL REMARKS. We showed in Theorem 2.6 that wheneverV is congruence
join semidistributive, then the variety CON(V) is also join semidistributive. The analogous
remark for meet semidistributivity is not true. The simplest counterexample isV = the
variety of semilattices, which is congruence meet semidistributive but CON(V) is the variety
of all lattices (according to [4]). A more surprising example appears in [13]: it is shown
that if V is the Polin product of two copies of the variety of distributive lattices, thenV
is congruence join and meet semidistributive, CON(V) is join semidistributive (in fact,
satisfiesE2), but CON(V) is not meet semidistributive. In particular, thisV is an example
of a variety that is congruence join semidistributive but has no finite bound on the length of
dual herringbones.

We can produce new congruence identities from the congruence identityβM = βM+1 of
Theorem 2.4 by using ideas from the proof of Theorem 2.6. LetV be a locally finite variety
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with typ{V} ⊆ {2,3,4}. If A ∈ V is finite, then by Theorem 7.7 (3) of [5] the quotient

Con(A)/
s∼ of the congruence lattice by the solvability congruence is join semidistributive.

Satisfaction of the equationβM = βM+1 is inherited by Con(A)/
s∼ from Con(A), so (as

in the proof of Theorem 2.6) there is someN such that Con(A)/
s∼ satisfiesEN for all

finite A ∈ V. Thus, any interval in Con(A) defined by anEN -failure,Int[α∨ (β ∧γ ), (α∨
βN) ∧ (α ∨ γN)], is a solvable interval. Since1 6∈ typ{V}, solvable intervals consist of
permuting congruences. So letω1(x1, . . . , xk) ≈ ω2(x1, . . . , xk) be any lattice identity
that holds in every lattice of permuting equivalence relations. We produce from this a
(k+3)-ary congruence identity ofV expressing the fact that any interval defined by anEN -
failure satisfiesω1 ≈ ω2. The identity is constructed as follows. Start with lattice variables
α, β, γ, δ1, . . . , δk. Defineβi andγ i as described earlier in the paper. Letµ = α∨ (β∧γ )
andν = (α ∨ βN) ∧ (α ∨ γN). ThenI = Int[µ, ν] represents a typical interval defined
by anEN -failure. Letδ∗i = µ ∨ (δi ∧ ν). The polynomiale(x) = µ ∨ (x ∧ ν) of the free
lattice generated by{α, β, γ, δ1, . . . , δk} is idempotent and has rangeI . This means that
the wordsδ∗1, . . . , δ∗k representk typical elements ofI . Thus

ω1(δ
∗
1, . . . , δ

∗
k ) ≈ ω2(δ

∗
1, . . . , δ

∗
k )

is a lattice equation that holds in a lattice if and only ifω1 ≈ ω2 holds in all intervals defined
by EN -failures. For large enoughN , this identity holds in Con(A) for all finite A ∈ V,
hence it holds throughoutV. This shows that ifV omits types1 and5, then there is anN
such that intervals in congruence lattices defined byEN -failures satisfy all identities true
in every lattice of permuting equivalence relations.

But rather than observe that intervals defined byEN -failuresare shapedlike intervals of
permuting equivalence relations, it is better to observe that theyare intervals of permuting
equivalence relations. In fact, all such intervals are locally solvable (and therefore consist of
permuting congruences, by Theorem 7.12 of [5]). The reason that this is true is that ifA ∈ V
is infinite and has congruencesα, β andγ ,µ = α∨ (β ∧γ ) andν = (α∨βN)∧ (α∨γN),
and if ν − µ contains a 2-snag, then it is not hard to show that for some finitely generated
subalgebraB ≤ A it is the case that

(α|B ∨ (β|B)N) ∧ (α|B ∨ (γ |B)N)− α|B ∨ (β|B ∧ γ |B)
contains a 2-snag (the same one). Thus, the value ofN that ensures that intervals of the
form Int[α ∨ (β ∧ γ ), (α ∨ βN)∧ (α ∨ γN)] are solvable for finite algebras inV is a value
that ensures that such intervals are locally solvable for infinite algebras inV. In particular,
this shows that intervals in Con(A) defined by failures of the join semidistributive law are
locally solvable whenA generates a locally finite variety that omits types1 and5.
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