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An algebra A is plain if it is finite, simple and has no non-trivial proper subalgebras. An
element 0 ∈ A is an idempotent element if {0} is a subuniverse and is a non-idempotent
element otherwise. A is idempotent if each of its elements is idempotent. In this paper we shall
say that A is nearly idempotent if A has at least one idempotent element and Aut(A) acts
transitively on the non-idempotent elements.

In [2], Ágnes Szendrei proves that every idempotent plain algebra generates a minimal variety
by showing that an idempotent plain algebra with more than two elements generates a congru-
ence modular variety. The proof is not long, but it relies on the classification theorem in [1] for
idempotent plain algebras of size > 2. The proof in [1] of this classification theorem covers several
pages. The argument in [2] is completed by directly examining the congruence modular case and
the 2-element case and proving for both that an idempotent plain algebra generates a minimal
variety. Here we give a short proof of the result using only “V = HSP”. With Theorem 4 we show
how to boost the result to a proof that every nearly idempotent plain algebra generates a minimal
variety.

We say that V satisfies condition (E) if V has a unary term e such that for all basic operations
f the identity f(e(x), . . . , e(x)) = e(x) holds. If A is an idempotent plain algebra, then V = V(A)
satisfies condition (E) with e(x) = x.

If A is plain and V(A) is not minimal, then there is a plain algebra B ∈ V(A) which generates
a minimal subvariety. Clearly, A 6∼= B in this case. Szendrei’s result can be deduced from the
following lemma, since it shows that when A is plain and idempotent and B ∈ V(A) is plain (and
of course idempotent), then A ∼= B.

LEMMA 1 If A is plain, V = V(A) satisfies condition (E) and B ∈ V is idempotent and plain,
then A ∼= B.

Proof: Assuming the hypotheses of the lemma we can find m, a subalgebra C ≤ Am and
a congruence θ on C such that C/θ ∼= B. Among all such situations, choose one so that |C| is
minimal. If η is a projection kernel restricted to C and η ≤ θ, then B ∈ H(C/η) = HS(A). A
is plain and B is nontrivial, so this yields A ∼= B and finishes the proof. Otherwise, for each
projection kernel η there is a pair (a, b) ∈ η − θ. We claim that (e(a), e(b)) ∈ η − θ as well.

Of course, (a, b) ∈ η implies (e(a), e(b)) ∈ η. Since C/θ ∼= B is idempotent, e(x) θ x holds on
C. Hence e(a) θ a and e(b) θ b hold. Now (a, b) 6∈ θ implies (e(a), e(b)) 6∈ θ by transitivity.
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By condition (E), e(a) is an idempotent element of C. Therefore D = e(a)/η is a subuniverse
of C containing e(a) and e(b). Since θ is nontrivial on D and B is plain we must have D/θ ∼= B.
By minimality we get C = D. Therefore C is a single η-class for any projection kernel η. This is
impossible since the projection kernels intersect to zero. 2

Now we begin the proof that every nearly idempotent plain algebra generates a minimal variety.
We need two preparatory lemmas.

LEMMA 2 If A is a nearly idempotent plain algebra, then V(A) satisfies condition (E).

Proof: Let U be the set of idempotent elements of A and let e be a unary term of minimal
range. Clearly, e(A) ⊇ U . If there is an element u ∈ e(A) − U , then the subalgebra generated by
u equals A since A is plain. In particular, there is a unary term f such that f(u) ∈ U . But now
fe has smaller range than e since f collapses two elements of e(A). This contradiction proves that
e(A) = U . This e satisfies the required identities. 2

LEMMA 3 Assume that V = V(A) where A is plain, but not idempotent. If Aut(A) acts
transitively on the non-idempotent elements of A, then A ∼= FV(1).

Proof: Let a ∈ A be a non-idempotent element. Since A ∈ V it suffices to observe that A
satisfies the universal mapping property with respect to the set {a} and some generating class of
algebras for V. We take {A} for this generating class. Now any function f : {a} → A where f(a)
is a non-idempotent element has an extension to some homomorphism f̂ : A→ A. Simply take an
f̂ ∈ Aut(A) such that f̂(a) = f(a). This extension is unique since a generates A. If instead f(a)
is an idempotent element, then the constant map f̂ : A→ A : x 7→ f(a) is the unique extension of
f to a homomorphism from A to A. 2

THEOREM 4 If A is nearly idempotent and plain and B ∈ V(A) is plain, then A ∼= B. Hence
every nearly idempotent plain algebra generates a minimal variety.

Proof: Together, Lemmas 1 and 2 prove that if B ∈ V(A) is plain, then A ∼= B or else B
is not idempotent. But if the latter holds and u is a non-idempotent element of B, then B =
SgB({u}) is a non-trivial homomorphic image of A by Lemma 3, so A ∼= B holds in this case as
well. The arguments in the paragraph preceding Lemma 1 explain why this conclusion proves that
every nearly idempotent plain algebra generates a minimal variety. 2

There is a plain algebra A which does not generate a minimal variety but whose automorphism
group acts transitively on the non-idempotent elements. To construct one such A, begin with the
idempotent reduct of a finite, 1-dimensional vector space and add in all the translations, x 7→ x+a,
as new unary operations. Aut(A) contains all the translations and so acts transitively on A. If θ
is the kernel of the function A ×A → A : (x, y) 7→ x− y, then (A ×A)/θ generates a non-trivial,
proper subvariety of V(A).

There are also plain algebras with idempotent elements which do not generate minimal varieties.
Of course, by Theorem 4 any such example must have at least 2 non-idempotent elements. To
construct an example, let A be any set which properly contains {0, 1}. Take as basic operations all
those operations p on A such that p(An) 6= A and p(w, . . . , w) = w for w ∈ A− {0, 1}. Then A is
plain and has only two non-idempotent elements. V(A) is not minimal since the subvariety defined
by all the identities of the form p(x̄) = p(ȳ) where p is a basic operation and x̄, ȳ are arbitrary tuples
of variables is proper and non-trivial. (A non-trivial member of this variety may be constructed as
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a quotient of A|A|.) This paragraph and the preceding one show that neither of the two conditions
defining the phrase “nearly idempotent” can be removed if the result of Theorem 4 is to hold.

The paper [3] introduces a class of examples of nearly idempotent plain algebras with exactly
one idempotent element. These algebras are used in [4] to provide examples of minimal, locally
finite varieties of groupoids which are inherently non-finitely based.

Acknowledgement. We thank the anonymous referee whose suggestions for reorganization sub-
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