
Axiomatizable and Nonaxiomatizable
Congruence Prevarieties

Keith A. Kearnes and J. B. Nation

Abstract. If V is a variety of algebras, let L(V) denote the prevariety of all lattices em-
beddable in congruence lattices of algebras in V . We give some criteria for the first-order
axiomatizability or nonaxiomatizability of L(V). One corollary to our results is a noncon-
structive proof that every congruence n-permutable variety satisfies a nontrivial congruence
identity.

1. Introduction

For a variety V , let L(V) denote the class of lattices embeddable in congruence
lattices of algebras in V . It is evident that L(V) is closed under the formation of
isomorphic lattices and sublattices. It is also closed under the formation of products,
because a product of congruence lattices of algebras Ai ∈ V is embeddable in the
congruence lattice of the product

∏
i∈I Ai via the map

∏

i∈I
Con(Ai)→ Con

(∏

i∈I
Ai

)
: (γi)i∈I 7→ Γ,

where a Γ b if ai γi bi for all i and aj = bj for all but finitely many j. Thus L(V) a
prevariety, which we call the congruence prevariety of V . In this note we discuss
the first-order axiomatizability of L(V). Theorem 2.1 describes some conditions
sufficient to guarantee the first-order axiomatizability of L(V), and Theorems 3.1
and 3.2 indicate some conditions necessary for axiomatizability. The combination
of Theorems 2.1 and 3.1 yields an unexpected new proof that every congruence
n-permutable variety satisfies a nontrivial congruence identity.

We use the symbol + for lattice join and juxtaposition or · for lattice meet. Meet
takes precedence over join in expressions that are not fully parenthesized.

2. Axiomatizable Congruence Prevarieties

Our only result concerning axiomatizable congruence prevarieties is a summary
of what can be derived from the literature.

Theorem 2.1. If V satisfies any one of the following conditions, then L(V) is
axiomatizable.
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(1) V is congruence distributive.
(2) V is congruence n-permutable for some n.
(3) V contains a nontrivial finite strongly solvable algebra.

Proof. For item (1), any prevariety of distributive lattices is a variety, hence is
first-order axiomatizable.

For item (3), if V contains a nontrivial finite strongly solvable algebra, then
V contains a locally finite, locally solvable, minimal subvariety M. According to
the results of [8] or [15], M is term equivalent to the variety of sets or pointed
sets. In either case, the congruence lattices of members of M are exactly the
partition lattices. Since every lattice is embeddable in a partition lattice, L(M)
(and therefore also L(V)) is the variety of all lattices. Since the prevariety L(V) is
a variety, it is first-order axiomatizable.

Item (2) is proved in both [1] and [5]. We include a proof here, too. To show
that the prevariety L(V) is first-order axiomatizable, it suffices to show that it is
closed under ultraproducts. That this is so is a consequence of the following claim.

Claim 2.2. Let Ai, i ∈ I, be similar algebras with n-permuting congruences.
If U is an ultrafilter on I, then the ultraproduct

∏
U Con(Ai) is embeddable in

Con (
∏
U Ai).

Let L be the common language of the Ai’s. Expand L to a language L+ con-
taining extra predicate symbols, as follows. For each sequence Θ := (θi)i∈I ∈∏
I Con(Ai) introduce a binary predicate symbol Θ(x, y). Interpret Θ(x, y) in Ai

so that ΘAi(a, b) is true iff (a, b) ∈ θi. Each Ai is an L+-structure, so the ultra-
product A :=

∏
U Ai is also an L+-structure. The fact that ΘAi(x, y) defines a

congruence on Ai is first-order expressible, so ΘA(x, y) defines a congruence on A.
Consider the assignment

∏
U Con(Ai)→ Con(A) defined by

(θi)i∈I/U ( = Θ/U) 7→ the congruence defined by ΘA(x, y). (2.1)

This is a well defined mapping, since if Θ = (θi)i∈I equals Ψ = (ψi)i∈I almost
everywhere modulo U , then Ai satisfies the sentence ∀x, y(Θ(x, y) ↔ Ψ(x, y)) for
almost all i, so A also satisfies this sentence. In this situation ΘA(x, y) and ΨA(x, y)
define the same relation on A. If (Θ · Ψ)(x, y) is the predicate associated to the
lattice meet (θi)i∈I · (ψ)i∈I = (θi · ψi)i∈I , then

Ai |= (Θ ·Ψ)(x, y)↔ Θ(x, y) & Ψ(x, y)

for every i ∈ I . Therefore (Θ · Ψ)A(a, b) holds iff ΘA(a, b) and ΨA(a, b) both
hold, proving that the assignment (2.1) preserves the lattice meet. If all Ai have
n-permuting congruences, then (θi)i∈I + (ψi)i∈I = (θi + ψi)i∈I =: Θ + Ψ, and

Ai |= (Θ + Ψ)(x, y)↔ ∃z0, . . . , zn(x = z0 & y = zn &
Θ(zi, zi+1), i even, and Ψ(zi, zi+1), i odd)

(2.2)

for all i. Thus A satisfies the formula in (2.2). It follows that the congruence defined
by (Θ + Ψ)A(x, y) is the n-fold composition (hence the join) of the congruences
defined by ΘA(x, y) and ΨA(x, y). This fact implies that (2.1) preserves the lattice
join, completing the proof of the claim and the theorem. �
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Given that congruence modularity is congruence distributivity composed with
congruence permutability, [3], it is reasonable to ask

Problem 2.3. Is the congruence prevariety of a congruence modular variety first-
order axiomatizable?

3. Nonaxiomatizable Congruence Prevarieties

This section contains the two main results of the paper, which are theorems about
the nonaxiomatizability of L(V) under some circumstances. The theorems will be
stated in the form “If L(V) is first-order axiomatizable and V satisfies a certain
Maltsev condition, then V must satisfy a stronger Maltsev condition”. Statements
of this form, A & M =⇒ M+, which are phrased in terms of axiomatizability,
may be written in terms of nonaxiomatizability as M & ¬M+ =⇒ ¬A.

To express our theorems we need some notation for lattice words in the variables
x, y and z. Let β0(x, y, z) = y, γ0(x, y, z) = z, βk+1(x, y, z) = y+x ·γk(x, y, z), and
γk+1(x, y, z) = z+ x · βk(x, y, z). Let x = x(y+ z) + yz and x = (x+ y)(x+ z)(y+
z). Throughout this section we shall focus on three related sequences of lattice
identities, namely

βm(x, y, z) ≈ βm+1(x, y, z), (εm)

βm(x, y, z) ≈ βm+1(x, y, z), and (εm)

βm(x, y, z) ≈ βm+1(x, y, z). (εm)

For a fixed m > 0, these identities get weaker as more bars are added to ε, and for
a fixed number of bars the identities get weaker as m increases. (These assertions
will be clearer after the discussion preceding the proof of Theorem 3.2.)

The two main theorems of this paper are the following.

Theorem 3.1. If L(V) is first-order axiomatizable and V satisfies any nontrivial
idempotent Maltsev condition, then L(V) satisfies identity εm for some m.

Theorem 3.2. If L(V) is first-order axiomatizable and satisfies identity εm for
some m, then L(V) also satisfies identity εM for some M .

It will become clearer later that εm is a nontrivial lattice identity for all m, so
Theorem 3.1 has content. As for Theorem 3.2, it is not difficult to construct lattices
satisfying (say) identity ε1 and not satisfying εM for any M , but we know of no
variety V such that L(V) satisfies εm for some m and does not satisfy εM for any
M . Hence we pose a problem.

Problem 3.3. Does Theorem 3.2 have content? (Is there a variety V such that
L(V) satisfies εm for some m but does not satisfy εM for any M?)

Before proving Theorems 3.1 and 3.2 we derive some corollaries.

Corollary 3.4. If V is congruence n-permutable, then V satisfies a nontrivial con-
gruence identity.
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Proof. Any congruence n-permutable variety V satisfies a nontrivial idempotent
Maltsev condition, e.g. the one in [4]. By Theorem 2.1 (2), L(V) is first-order
axiomatizable, so it follows from Theorem 3.1 that L(V) |= εm for some m. �

In fact, Paolo Lipparini has recently shown in [14] that if V is congruence n-
permutable for some n, then L(V) satisfies the identity εm for some m, which is a
stronger identity than the identity εm guaranteed in Corollary 3.4. We do not know
whether L(V) must satisfy εm for some m assuming only that L(V) is first-order
axiomatizable and V satisfies a nontrivial idempotent Maltsev condition, so we pose
this as a problem.

Problem 3.5. Is it true that L(V) |= εm for some m whenever L(V) is first-order
axiomatizable and V satisfies a nontrivial idempotent Maltsev condition?

Problem 3.5 could be answered affirmatively by answering Problem 3.3 nega-
tively. Or, given Theorems 3.1 and 3.2, Problem 3.5 could be answered affirma-
tively by showing that if L(V) is first-order axiomatizable and L(V) |= εm for some
m, then L(V) |= εM for some M .

Corollary 3.6. If V is a locally finite variety for which 1 /∈ typ{V} and 5 ∈ typ{V},
then L(V) is not first-order axiomatizable.

Proof. By Theorem 9.6 of [6], V satisfies a nontrivial idempotent Maltsev condition
iff 1 /∈ typ{V}. By Theorem 9.18 of [6], if V satisfies a nontrivial congruence
identity, then 5 /∈ typ{V}. Thus, if 1 /∈ typ{V} and 5 ∈ typ{V}, then V satisfies
a nontrivial idempotent Maltsev condition but no nontrivial congruence identity.
Theorem 3.1 proves that L(V) is not first-order axiomatizable. �

For example, the variety S of semilattices is locally finite and satisfies typ{S} =
{5}, so L(S) is not first-order axiomatizable.

Next we embark on the proof Theorem 3.1. The first lemma allows us to view
one of the hypotheses of Theorem 3.1 in a lattice-theoretic way.

Lemma 3.7. Let V be a variety. The following conditions are equivalent.

(1) V satisfies a nontrivial idempotent Maltsev condition.
(2) D1 is not in L(V).

Proof. This is proved in Theorem 4.23 of [7]. �
Thus, Theorem 3.1 may be viewed as asserting that if L(V) is first-order axiom-

atizable, then either D1 ∈ L(V) or L(V) |= εm for some m. In order to recognize if
D1 ∈ L(V), it will be useful to have a presentation of D1.

Lemma 3.8. A presentation of D1 relative to the variety of all lattices is 〈G | R〉
where G = {x, y, z} and R consists of the relations:

(I) x ≤ y + z,
(II) z(x+ y) ≤ y,

(III) y(x+ z) ≤ z, and
(IV) (x + y)(x+ z) ≤ x.
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Figure 1. The lattice D1

Moreover any lattice generated by G and satisfying the relations in R and also
satisfying x 6≤ z is isomorphic to D1.

Proof. This can be derived from Lemma 5.27 of [7], which is the dual of the
Lemma 3.8. �
Proof of Theorem 3.1. We shall show that if L(V) is first-order axiomatizable and
fails to satisfy εm for all m, then D1 ∈ L(V). The result then follows from
Lemma 3.7.

Let F be the lattice that is free relative to L(V) over the set {a, b, c}. Choose
a nonprincipal ultrafilter U on ω, and let F∗ denote the ultrapower

∏
U F. Let

∆: F→ F∗ : x 7→ (x, x, . . .)/U be the diagonal embedding of F into F∗. Since L(V)
is first-order axiomatizable, F∗ ∈ L(V), hence we may (and do) consider F∗ to be
a sublattice of Con(A) for some A ∈ V .
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Figure 2. Some elements of F

Let a = (a + b)(a + c)(b+ c), bk = βk(a, b, c), ck = γk(a, b, c), ak = a · bk if k is
even and ak = a · ck if k is odd. The elements a, ak, bk and ck all belong to F, and
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some of them are ordered as depicted in Figure 2. From the way the elements a, bk,
and ck are defined in terms of a, b and c, and the fact that a ≤ b + c, it is easy to
see that the following relations hold in F.

(i) b = b0 ≤ b1 ≤ b2 ≤ b3 ≤ · · · ≤ a+ b ≤ b+ c,
(ii) c = c0 ≤ c1 ≤ c2 ≤ c3 ≤ · · · ≤ a+ c ≤ b+ c,

(iii) a0 ≤ a1 ≤ a2 ≤ · · · ≤ a,
(iv) b+ a2k+1 = b+ a2k+2 = b2k+2,
(v) c+ a2k = c+ a2k+1 = c2k+1,

(vi) b2k · a = a2k, and
(vii) c2k+1 · a = a2k+1.

Less obvious is the fact that

(viii) a = (a+ b)(a+ c).

To see that this is so, observe that a ≤ a + b ≤ (a + b)(b + c) and a ≤ a + c ≤
(a+ c)(b+ c), so meeting corresponding elements in these inequalities yields

a = a · a ≤ (a+ b)(a+ c) ≤ (a+ b)(a+ c)(b+ c) = a.

This shows that (viii) holds.
Using these relations it can be seen that the order among the elements is the

one that is depicted in Figure 2, and also that if any two of the elements that
appear in the figure are equal in F, then bk = bk+1 for all sufficiently large k. If
this happens, then since F is freely generated by {a, b, c} we get that L(V) satisfies
βk(x, y, z) ≈ βk+1(x, y, z) for any sufficiently large k. Therefore, if L(V) fails to
satisfy βk(x, y, z) ≈ βk+1(x, y, z) for every k, then all elements in Figure 2 are
distinct. To finish the proof, we must derive from this property that D1 ∈ L(V).
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Figure 3. Some elements of F∗
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Assume that all elements of Figure 2 are distinct. For each w ∈ F that is denoted
by a lower case letter, use the corresponding upper case letter W to denote the el-
ement of F∗ that is the image of w under the diagonal embedding. That is, W :=
∆(w) = (w,w,w, . . .)/U . Corresponding to the elements a, a, ak, b, bk, c, ck ∈ F we

therefore have A,A,Ak, B,Bk, C, Ck ∈ F ∗. Define D :=
(
a0, a1, a2, · · ·

)
/U ∈ F ∗.

The fact that each coordinate of
(
a0, a1, a2, · · ·

)
is strictly less than the correspond-

ing coordinate of
(
a, a, a, · · ·

)
implies that D < A in F∗. The fact that all but

finitely many of the coordinates of the diagonal tuple
(
ak, ak, ak, · · ·

)
are strictly

less than the corresponding coordinate of
(
a0, a1, a2, · · ·

)
implies that Ak < D in

F∗ for all k. Thus, the sublattice of F∗ that is generated by {A,B,C,D} contains
elements ordered as in Figure 3. Let E ∈ Con(A) denote the join of the elements

Ak, k < ω. Observe that E ≤ D < A. The proof of the theorem may be completed
by proving the following claim.

Claim 3.9. The elements
{
A,A+B,A+ C,B + C,B +E,C +E,E

}
consitute a

sublattice of Con(A) that is isomorphic to D1. Hence D1 ∈ L(V).

r r
r rr r rPP

PPP
��
���

PP
PPP

��
���

�����
PPPPP
A

B + C

A+B

E + B

A+ C

E + C

E

Figure 4. Some congruences of A

This claim will be proved by applying Lemma 3.8 to the congruences x := A,

y := B + E, and z := C + E. Using the fact that A ≥ E, the statements (I)–(IV)
from Lemma 3.8 that must be established may be written as:

(I) A ≤ (E +B) + (E + C),

(II) (C +E)
(
A+B

)
≤ B +E,

(III) (B +E)
(
A+ C

)
≤ C +E, and

(IV)
(
A+B

)(
A+ C

)
≤ A.
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Item (I) is true since B + C ≥ A. Item (IV) is true because a =
(
a+ b

) (
a+ c

)
in

F. Items (II) and (III) are symmetric, so we prove only (II). For this we have

(C + E)
(
A+B

)
=
[
(C +E)

(
C +A

)](
A+B

)

= (C +E)
[(
C +A

)(
A+B

)]

= (C +E)A = A
(
C +

∑
k evenAk

)

= A
(∑

k even

(
C +Ak

))

= A (
∑
k odd Ck)

=
∑

k oddACk (by the upper continuity of Con(A))

=
∑

k oddAk = E ≤ B +E.

To show that the sublattice generated by x, y and z is isomorphic to D1 we must

show that x 6≤ y, i.e. A 6≤ C+E. If instead A ≤ C+E, then from the middle lines

of the previous calculation we would have A = A ·A ≤ A(C+E) = E, contradicting

our earlier conclusion that E ≤ D < A. �
Next we turn to the proof of Theorem 3.2, which asserts that if L(V) is first-

order axiomatizable and satisfies εm for some m, then it satisfies the stronger type
of identity εM for some M . To make it easier to follow the argument, we briefly
explain what properties the identities εm, εm, and εm express.

Given elements a, b, c in a lattice L, the elements bk = βk(a, b, c) and ak = a · bk
for k even, ck = γk(a, b, c) and ak = a · ck for k odd, form a partial sublattice of L,
called a herringbone. This means that the unions of chains {ak}∞k=0 ∪ {b2k}∞k=0

and {ak}∞k=0∪{c2k+1}∞k=0 are sublattices, that a2k+1+b2k = b2k+2, a2k+2 ·b2k = a2k,
a2k+2+c2k+1 = c2k+3, and a2k+3 ·c2k+1 = a2k+1. The bk’s and ck’s lie in the interval
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Figure 5.

I [bc, b+c], which we call the frame of the herringbone. The element a is where the
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herringbone starts. If b2k = b2k+2 for some k, then it can be shown that b2k = b2`
for all ` ≥ k. When this happens we say that the herringbone terminates after
at most k steps.

A lattice satisfies ε2m if and only if all its herringbones terminate after at most
m steps. A lattice satisfies ε2m if and only if all herringbones that start at an
element of the form a = a(b+ c) + bc terminate after at most m steps. This barred
element, a, satisfies bc ≤ a(b + c) + bc = a ≤ b + c, hence lies in the frame of the
herringbone. Conversely if u ∈ I [bc, b+c], then u = u(b+c)+bc = u, so all elements
in the frame are barred elements. Thus, ε2m asserts that herringbones that start
within the frame terminate after at most m steps. A lattice satisfies ε2m if and only
if all herringbones that start at an element of the form a = (a + b)(a + c)(b + c)
terminate after at most m steps. This starting element, a, is the meet of an element
(a + b)(b + c) from the interval I [b, b + c] and an element (a + c)(b + c) from the
interval I [c, b + c]. Call an element that is a meet of an element from I [b, b + c]
and an element from I [c, b+ c] a product element of the frame, so double barred
elements are product elements. Conversely, if u = vw is a product element with
v ∈ I [b, b+ c] and w ∈ I [c, b+ c], then u ≤ u = (u+ b)(u+ c)(b+ c) ≤ vw(b+ c) ≤ u,
so the double barred elements are exactly the product elements. Thus, ε2m asserts
that herringbones that start at a product element of the frame terminate after at
most m steps.

In Theorem 3.1 we showed that if L(V) is first-order axiomatizable and V satisfies
an idempotent Maltsev condition, then there is an m such that all herringbones that
start at product elements terminate after m steps. To prove Theorem 3.2 we will
argue that if L(V) is first-order axiomatizable, satisfies εm for some m, and there
is no m such that all herringbones terminate after m steps, then there can be no
M such that all herringbones that start within the frame terminate after M steps.

Proof of Theorem 3.2. We assume that L(V) is axiomatizable, L(V) |= εn for some
n, and that L(V) 6|= εm for any m. We must show that L(V) 6|= εM for any M .

Let F be the lattice freely generated by {a, b, c} relative to L(V). Choose a non-
principal ultrafilter U on ω, and let F∗ denote the ultrapower

∏
U F. Let ∆: F→ F∗

be the diagonal embedding. As in the proof of Theorem 3.1 we may assume that
F∗ is a sublattice of Con(A) for some A ∈ V .

Let bk = βk(a, b, c), ck = γk(a, b, c), ak = a · bk if k is even and ak = a · ck if k
is odd. Since F is free over {a, b, c} in L(V), and we are assuming that identity εm
fails in L(V) for all M , it follows that all bk are distinct in F. From the definition
of the bk, it follows that the ak and the ck are also distinct for all k. Apply the
embedding ∆ to these elements. Following the convention introduced in the proof
of Theorem 3.1 we denote by upper case W the element ∆(w) for each w ∈ F .
Now the Bk are congruences of A, and B0 < B2 < B4 < · · · , just as in the proof
of Theorem 3.1. Similarly A0 < A1 < A2 < · · · and C1 < C3 < C5 < · · · . Thus,
the herringbone in Con(A) with frame I [BC,B + C] that starts at A does not
terminate. To complete the proof we will show that the herringbone in Con(A)
with frame I [BC,B + C] that starts at the barred element A = A(B + C) + BC
also does not terminate.
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Claim 3.10. The herringbone in Con(A) with frame I [BC,B + C] that starts at
A(B + C) does not terminate.

This claim holds because the herringbone with frame I [BC,B + C] that starts
at A(B + C) is the same as the one that starts at A, which does not terminate by
assumption.

Let Aω =
∑

k<ω Ak, Bω = B + Aω ( = B +
∑
k<ω Ak =

∑
k<ω B + Ak =∑

k evenBk), and Cω = C+Aω ( =
∑

k oddCk), where the sum is taken in Con(A).

Claim 3.11. ABω = ACω

By the upper continuity of Con(A) we have

ABω = A
∑

k even

Bk =
∑

k even

ABk ≤
∑

k odd

Ck = Cω

and similarly ACω ≤ Bω, so in fact

ABω = ACω. (3.1)

By (3.1) and the properties of the centralizer relation (Proposition 3.4 of [6] or
Theorem 2.19 of [7]), C(Bω, A;ABω) and C(Cω, A;ABω), so C(Bω +Cω, A;ABω),
and therefore A(Bω + Cω) is abelian over ABω . Since B ≤ Bω ≤ B + C and
C ≤ Cω ≤ B + C, we have Bω + Cω = B + C, so A(B + C) is abelian over ABω.
We will use the notation θ � ψ to denote that θ ≤ ψ and ψ is abelian over θ, so
P := ABω �A(B + C) =: Q.

It follows from (3.1) that ABω ≤ BωCω. Since V satisfies a congruence identity,
viz. εn, Corollary 4.12 of [9] guarantees that V has a weak difference term. But
for varieties with a weak difference term, Lemma 6.10 of [7] guarantees that the
relation � is compatible with join and meet, so

R := BωCω = ABω +BωCω �A(B + C) +BωCω =: S.

Part of this calculation shows thatR+Q = S. We also haveRQ = BωCωA(B+C) =
ABω = P , so I [P,Q] and I [R,S] are perspective abelian intervals. In this situation,
the join map x 7→ x + R is a surjective function from I [P,Q] to I [R,S], according
to Theorem 6.24 of [7]. Since R = BωCω ≤ Bω and R ≤ S, the element BωS lies
in I [R,S], so there is an element X ∈ I [P,Q] such that X +R = BωS. We have

ABω = P ≤ X ≤ (X +R)Q = (BωS)(A(B + C)) ≤ ABω,
so X = ABω. Therefore

BωS = X +R = ABω +BωCω = BωCω.

A similar argument show that CωS = BωCω , so

BωS = CωS. (3.2)

Now, since Bω ≥ B0 = B and Cω ≥ C, we have

S = A(B + C) +BωCω ≥ A(B + C) +BC = A, (3.3)

hence AS = A. Combining the results of (3.2) and (3.3) we get ABω = (AS)Bω =
A(BωS) = A(CωS) = ACω, which yields the claim.
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Claim 3.12. There is a function f : ω → ω such that ABn ≤ Cf(n) and ACn ≤
Bf(n).

Using Claim 3.11 we derive that

ABn ≤ ABω = ACω ≤ Cω. (3.4)

If D = (c1, c3, c5, . . .)/U ∈ F∗ ≤ Con(A), then Ck < D for all k in Con(A),
since (ck, ck, ck, . . .) is below (c1, c3, c5, . . .) in all but finitely many coordinates.
Therefore Cω ≤ D in Con(A). Together with (3.4) this yields that ABn ≤ D in
Con(A). Since ABn = (abn, abn, . . .)/U , this means that (abn, abn, . . .) is below
(c1, c3, c5, . . .) in almost all coordinates modulo U . Since the ck’s are increasing,
this can only happen of abn ≤ cN for all sufficiently large N . Similarly it must
be that for every n the inequality acn ≤ bN holds for all sufficiently large N . The
claim follows by defining f(n) to be the least natural number N for which both
abn ≤ cN and acn ≤ bN hold.

Claim 3.13. βk(A,B,C) ≤ Bfk(0) and γk(A,B,C) ≤ Cfk(0).

Claim 3.13 follows from Claim 3.12 by induction. For the basis of induction,
β0(A,B,C) = B = B0 = Bf0(0) and similarly γ0(A,B,C) = C = C0 = Cf0(0). If
the claim holds for some k, then

βk+1(A,B,C) = B +A · γk(A,B,C)
≤ B +ACfk(0)

≤ B +Bfk+1(0) (Claim 3.12)
= Bfk+1(0),

and similarly γk+1(A,B,C) ≤ Cfk+1(0).

We now complete the proof of Theorem 3.2. Since A = A(B + C) + BC ≥
A(B+C), the elements βk(A,B,C) of the herringbone with frame I [BC,B+C] that
starts at A are term by term above the corresponding elements βk(A(B+C), B, C)
of the herringbone with the same frame that starts at A(B + C). But, as already
noted in the proof of Claim 3.10, this latter herringbone is the same as one that
starts at A. This and Claim 3.13 together show that Bk ≤ βk(A,B,C) ≤ Bfk(0).

If the herringbone with frame I [BC,B+C] starting at A terminated after at most
k steps for some fixed k, then for all ` ≥ k we would have

B2` ≤ β2`(A,B,C) = β2k(A,B,C) ≤ Bf2k(0),

forcing B2` ≤ Bf2k(0) for all ` ≥ k. This forces the herringbone starting at A to
terminate, contrary to assumption. �
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