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LEFT AND RIGHT NILPOTENCE DEGREE ARE
INDEPENDENT

K. A. KEARNES, E. W. KISS

ABSTRACT. We show that for any integers £, > 2 there is a finite algebra
whose left nilpotence degree is £ and whose right nilpotence degree is r.

1. INTRODUCTION

Chapter 3 of [2] introduces an extension of the group commutator oper-
ation to arbitrary algebras. This operation is a binary operation on the set
of congruences of an algebra. For congruence modular varieties the general
commutator has essentially the same properties as the group commutator, but
for nonmodular varieties its properties are somewhat weaker; for example, the
general commutator may fail to satisfy [, 8] = [, a] for congruences a and
[ on an algebra in a nonmodular variety. This leads to (at least) two possible
nilpotence concepts: when « is a congruence define (a]' = [a)! = « and

(@ = o, (@], [)*" =[[a)*,al.

If (a]**! = 0, then we say that « is n-step left nilpotent, while if [a)"1 = 0,
then « is n-step right nilpotent. The left nilpotence degree of « is the smallest
n > 1 such that « is n-step left nilpotent, and the right nilpotence degree is
defined symmetrically.

A nontrivial relationship between left and right nilpotence for congruences
of finite algebras was discovered in [4]:

Theorem 1.1. (Theorem 3.5 of [4]) Let A be a finite algebra. The right
nilpotent congruences of A are left nilpotent.
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For the group commutator the converse of this statement is true; moreover
the left and right nilpotence degree of any group congruence agree. But it is
shown in [4] that left nilpotent congruences on arbitrary finite algebras need
not be right nilpotent, while for infinite algebras neither nilpotence condition
implies the other.

The purpose of this paper is to solve two problems raised in [4] concerning
the independence of the left and right nilpotence degrees of congruences on
finite algebras. We first solve Problem 1 of that paper:

Problem 1. Show that if § is a right nilpotent congruence on a finite algebra
and a < S, then [, a] < [a, G].

We ‘solve’ this problem by producing a counterexample. (Let = 1 and
a = 0y_1 in the example from Section 2 below.) We then solve Problem 2 of [4]:

Problem 2. Find all pairs (£, 7) such that there exists a finite algebra A with
a congruence # that has left nilpotence degree £ and right nilpotence degree r.

Clearly ¢ = 1 iff 0 is abelian iff » = 1, so the solution to this problem requires
one to find only the pairs (¢,r) for which £,7 > 2. We will show that for
any £, > 2 there is a finite algebra A whose largest congruence 6 = 14 has
nilpotence type (¢,7). This task is simplified by an observation from [4]: if A
is a finite algebra with a congruence 6 of nilpotence type (£,7) and A’ is a finite
algebra with a congruence 6’ of nilpotence type (¢',7'), then the nonindexed
product A ® A’ has the product congruence € x 6’ which has nilpotence type
equal to (max(¢,¢'), max(r,7')). Thus, to show that nilpotence type (£,7) can
be realized it suffices to prove that nilpotence type (4,2) can be realized (see
Section 2) and that nilpotence type (2,7) can be realized (see Section 3). See
[3] for earlier partial results on Problem 2.

Define the extended (left, right) nilpotence degree of a congruence 8 to be
equal to oo if the congruence is not (left, right) nilpotent, and to be equal to
its usual nilpotence degree if it is nilpotent. The statement made about the
left or right nilpotence degree of a product congruence on A® A’ holds also for
the extended left or right nilpotence degree if we order the set {1,2,... 00}
of possible degrees with n < oo for all n. Example 1 of [4] shows that there
is a finite algebra whose total congruence 14 has extended nilpotence type
(2,00), and Example 3 of [4] shows that there is an infinite algebra whose
total congruence 14 has extended nilpotence type (0o, 2). Using nonindexed
products and the results of this paper, this implies that there exist infinite
algebras whose total congruence has any given extended nilpotence type (¢, r)
with £, > 2. It also implies that there exist finite algebras whose total
congruence has any given extended nilpotence type (£,7) with £, > 2 except
types (00,n), n < oo, which must be excluded according to Theorem 1.1.

The pathology we describe in this paper can only arise in algebras that
have ‘very weak’ operations. In any variety with a weak difference term (the
existence of which is equivalent to a fairly weak idempotent Maltsev condition)
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the behavior of the commutator on solvable congruence intervals is the same
as the behavior that one finds on solvable congruence intervals in congruence
permutable varieties. In particular, the extended left nilpotence degree of any
congruence equals the extended right nilpotence degree. Moreover, it follows
from Lemma 3.2 of [4] that the commutator properties of solvable congruence
intervals of finite algebras that omit type 1 are again well behaved, and again
the extended left nilpotence degree of any congruence equals the extended
right nilpotence degree. Thus, the examples we construct must include type 1.
In fact, they are both strongly nilpotent algebras in the sense of [5], and are
E-minimal algebras of type 1. E-minimal algebras are defined and described
in [2]. The structure theorem for the type 1 case is given in Theorem 4.4 of [6].
The reader can easily verify using this theorem that the algebras we construct
are indeed E-minimal. They are strongly nilpotent by Lemma 3.4 of [5].

We close the Introduction by recalling the precise definition (from [2]) of
the general commutator operation. If A is an algebra with congruences «, 8
and 0, then we say that the relation C(«, 3;0) holds if whenever ¢(z,y) is an
(n+ 1)-ary term of A, (a,b) € a, u,v € A" with (u;,v;) € G, then

t(a,u) =5 t(a,Vv)
implies that
t(b,u) =5 (b, v).

(The underlined values changed without changing the d-relation.) The com-
mutator of « and [ is the least congruence [a, ] such that C(«,S;[a, 5])
holds.

2. THE (¢, 2)-EXAMPLE

In this section we construct an algebra L of nilpotence type (£,2) on the
set L ={0,1,...,£}. L has one binary operation given by the following table:

[« o] 1 ]2 [--[e-1] ¢ ]
0 | 0 | 0 [ T |—]f-2[f—1
1 [0 [0 |1 —2[i-1
2 | 0 | 0 | 1 (—2[i-1
[—1 0 [0 | 1 —2[i-1
¢ e=ije=ili=1 (—1i-1

Thus, z * y = max{0,y — 1} if z # ¢, and = * y = £ — 1 otherwise.
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Lemma 2.1. The congruence lattice of L is the (£ + 1)-element chain
0p =0 <01 <---<0,=1g
where 0; = (I x I) UA for I ={0,1,... ,i} and A ={(z,z) |z € L}.

Proof. To prove that the equivalence relation 6; = (I x I) UA is a congruence,
it suffices to show that if (a,b) € 6; and ¢ € L, then (ax*c,bxc), (cxa,cxb) € 0;.
Only the cases where 6; # 17, are nontrivial, so we may assume that a,b € I #
L. From the multiplication table we see that under this assumption a*c = bx*c,
so (axc,bxc) € 0;. Moreover, if ¢ # £, then cxa,cxb € {0,1,... ,i— 1} while
ifc=1/ weget cxa=/¢—1=cx*b. In either case we have (¢ x a,c *b) € 6;.

To prove that we have located all congruences, it suffices to show that any
principal congruence of L is some 6;. For this we will argue that

(1) If a < b, then Cg(a,b) = Cg(0,b), and
(2) Cg(0,b) < Cg(0,b+1).

Since 6 contains (0,b) and not (0,b+ 1), these two items will establish that
the principal congruences are precisely those of the form Cg(0,b) = 6.

Item (2) follows from the fact that Cg(0,b+ 1) contains (0%0,0x(b+1)) =
(0,b). Repeated use of (2) shows that (0,a) € Cg(0,b) for any a < b. This
proves part of (1): for any a < b we have (a,0), (0,b) € Cg(0,b), so Cg(a,b) <
Cg(0,b). We prove the other inclusion by induction on b. Suppose that for all
a' < b < b we have Cg(a',b’) = Cg(0,b'). To prove that Cg(a,b) > Cg(0,b)
for all a < b, we may restrict ourselves to the case where a # 0. Thus
(a—1,b—1) = (0 xa,0 xb) € Cg(a,b). By induction and (2), (0,z) €
Cg(0,b — 1) = Cg(a —1,b— 1) for all z < b — 1. In particular, (0,a) €
Cg(a — 1,b — 1) < Cg(a,b). Since Cg(a,b) contains both (0,a) and (a,b) it
also contains (0,b). This finishes the proof that (1) holds, and so finishes the
proof of the lemma. O

Lemma 2.2. L is 2-step right nilpotent.

Proof. Since L/6,_1 is a 2-element algebra with a single constant operation, it
is abelian. Thus [1,1] < 6;,_;. By proving that [#;_1,1] = 0 we will establish
that [[1,1],1] < [f¢—1,1] = 0, which is what the lemma claims.

Claim 2.3. Define a binary relation Q on L x L by letting {(a,b), (c,d)) € Q
iff one of the following is true:
(1) (a,b) = (c,d),
(#4) a=b,c=d and a,c < ¢,
(#i1) a=c and b,d < a < £, or
(twv) b=d and a,c <b< L.

Then 2 is a congruence on L x L.
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F1GURE 1. The partition associated to (2.

It is easy to see that the relation (2 is an equivalence relation on L X L that
partitions the set into the classes depicted in Figure 1.

To verify that Q is a congruence we must show that if (a,b) =q (c,d)
and (e, f) € L x L, then (e, f) x (a,b) =q (e, f) * (¢,d) and (a,b) * (e, f) =q
(c,d) % (e, f). This is trivial if we are in case (i) of the definition of Q (the
case where (a,b) = (¢,d)). Thus we only need to consider cases (ii)—(iv). To
simplify the arguments that follow, we shall use the notation z~ to mean z —1
for z > 0 and 0 for z = 0.

Case (ii). In this case a = b,c = d and a,c < £. We must prove that
(e, f) *(a,a) =a (e, ) * (¢, c) and (a,a) (e, f) =q (¢,¢) # (e, f). By examining
the multiplication table for * we see that (a,a) * (e, f) = (c,¢) * (e, f) when
a,c < £, so we do have (a,a)*(e, f) =q (¢, c)* ( f)- For the other verification,
ife L+ fore={—f then (e, f) * (GG)E{( ,a”),(£7,£7)} and (e, f) *
(c,c) € {(¢,¢),(£ ,£)}. In any case, item (i7) of the deﬁnition of Q proves
that (e, f) * (a,a) =q (e, f) * (¢,c). If e < £ = f, then (e, f) * (a,a) = (a™,£7)
while (e, f) *(c,c) = (¢,£7). Thus (e, f) x (a,a) =q (e, f) * (¢, c) by item (iv)
of the definition of 2. Similarly, ife = £ > f, then (e, f)*(a,a) =q (e, f)*(c, c)
by item (i77) of the definition of .

Case (i1i). In this case a = ¢ and b,d < a < £. We must prove that
(e, f)*(a,b) =qa (e, f) * (a,d) and (a,b) * (e, f) =a (a,d) * (e, f). For the first
verification, note that if f = £ we get (e, f)*(a,b) = (exa,£™) = (e, f) *(a, d),
0 (e, £)*(a,b) =q (e, f)* (a,d); but if f # £, then (e, ) (a,b) = (exa,b-) =g
(exa,d™) = (e, f) * (a,d) by item (7i7) of the definition of 2. For the second
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verification, (a,b) * (e, f) = (axe, f7) = (a,d) * (e, f), so (a,b) * (e, f) =a
(a,d) * (e, f)-

Case (iv). In this case b = d and a,c < b < £. This argument is similar to
the previous case. The claim is proved.

It is straightforward to check that [@y—1, 1] = 0 follows from the result stated
in the previous claim (that there is some congruence 2 on L x L which relates
(a,a) and (b,c) iff b = c and (a,b) € 0;_1). We include the details. Suppose
that p(z,y) is a term, u,v € L", (r,s) € 0y 1, and

t(r,u) = a =t(r,v).
We wish to show that for
b=1t(s,u), t(s,v)=c

we must have b = c. Since (r,s) € 6,_1, we have (r,7) =q (s, s) by item (77) of
the definition of €2, and since #((z,y), (u,v)) is a unary polynomial of L x L
we get
(aa G,) = t((’f‘, T)a (u,v)) =0 t((sa 3)7 (ua V)) = (ba C)'
By the properties of ©, b = ¢. This establishes C(6y_1,1;0), so [#;—1,1] = 0.
]
Lemma 2.4. The left nilpotence degree of L is exactly £.

Proof. Choose t(z,y) =z *y, (£,0) € 0, =1, and (0,:) € 6;. If we change the
underlined value in the equality

t(£,0) =£+x0=4—1="~Lxi=t(Li),
from ¢ to 0 we get that
t(0,0) = 0% 0 =15, 0% i =¢(0,7).

Since (0% 0,0%4) = (0,4 — 1) when 4 > 0, and 6;_; = Cg(0,7 — 1), this implies
that [1,9,'] > @;_1 when 7 > 0.

In Lemma 2.2 we showed that L is right nilpotent. By Theorem 1.1, right
nilpotent algebras are left nilpotent. This implies that [1,6;] < 6; for each i >
0. Since the congruence lattice of L is a chain, it follows that [1,6;] < 6; ; for
each 7 > 0. (This can be verified directly, without resorting to Theorem 1.1.)
Combining this with the result of the preceding paragraph we get that [1,6;] =
0; 1 for each ¢ > 0. It follows that the descending left central series is exactly

1=0,>60,_1>--->60,>0,=0,

and so the left nilpotence degree of L is /. O
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3. THE (2,r)-EXAMPLE

In this section we construct an algebra R of nilpotence type (2,7). The
construction and its verification is similar to the one presented in the previous
section. The underlying set of the algebra R is the set R of all pairs (i, 7)
such that 1 < ¢ < j < r. The algebra R has one binary operation *, and its
operation table has the property that all rows are the same except for the last
one, corresponding to (r,7). Thus, to present the table, we have to define the
function f(y) = u*y for u # (r,r), and the function ¢g(y) = (r,7) xy. Let
f((3,5)) = (i—1,5) if i > 1, and f((1,5)) = (1,1). The function g is equal
to f with the exception that ¢g((i,i)) = (i — 1,7 — 1) for 4 > 1. These functions
are shown on Figure 2 for the case of 7 = 4 (where an unlabeled arrow u — v
means that f(u) = g(u) = v). To make the calculations easier to follow, we
shall sometimes write the pair (i, 7) simply as ij (as in Figure 2).

11 :112\13 14

N
22 2? 24
N
33 34
!
44

FIGURE 2. The mappings f and g.

The congruence lattice of R is not a chain in general. We shall define special
congruences of R. Let ¢, = 1g, and for 1 < ¢ < r—1 let v; consist of the pairs
(ab,ad), where a < i or b = d. In Figure 2 the partition associated to 1); is
easy to visualize: the nontrivial blocks are the first ¢ rows. Let S = R — {rr}.

Lemma 3.1. The relations v; are congruences of R, and they satisfy that
Or =1 <1 < -+ <1t = 1p.

Proof. To prove that the equivalence relation v); is a congruence, it suffices to
show that if ab =y, cd and u € R, then ab* u =y, cd xu and u * ab =y, u * cd.
As i, = 1g is obviously a congruence, we may assume that i < r. Then
all nontrivial blocks of 1); are contained in the set S = R — {rr}. We may
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assume that ab and cd are in such a block. The rows of the operation table of x
corresponding to S are all equal (and are given by f). Therefore abxu = cdx*u,
and so abxu =y, cd+u indeed. If u € S, then uxab = f(ab) and u*cd = f(cd).
If u ¢ S (that is, u = rr), then we get that u x ab = g(ab) and u * cd = g(cd).
Thus we have to verify that f(ab) =y, f(cd) and g(ab) =y, g(cd).

From ab =y, cd we get that a = ¢ < i. If a(= ¢) = 1, then f(ab) =
fled) = g(ab) = g(ed) = 11. If a(= ¢) > 1, then f(ab) = (a — 1,b), and
f(ed) = (¢ —1,d). Here a —1 = ¢ — 1 < i, and therefore f(ab) =y, f(cd).
The argument for g is similar, since g also decreases the first coordinates
by one. O

Lemma 3.2. R is 2-step left nilpotent.

Proof. We shall prove that [1,1] < 4,1, and that [1,7,_1] = 0. The first
statement is clear, since in the factor modulo ,_; the functions f and g¢
become equal, and thus this factor is an essentially unary algebra, hence it
is abelian. To prove that [1,4,_1] = 0 holds we shall establish the following
statement. Recall that two elements of R are 1,_;-related if and only if their
first coordinates are equal.

Claim 3.3. Denote by T the subalgebra of R x R whose universe is the set
{(u,v) € Rx R | u=y,_, v}. Consider the binary relation E on T defined as
follows. Let a = ajas, b = biby, ¢ = c1co and d = dyds be elements of R such
that (a,b), (c,d) € T (hence a1 = by and ¢1 = d1). Now {(a,b),(c,d)) € E iff
one of the following is true:

(i) (a,b) = (c,d),
()a-bandc-d

(741) a = ¢ and ba,ds < ag, or
(tv) b=d and ag,c2 < bo.

Then = is a congruence on T.

Again it is easy to see that the relation = is an equivalence relation on T’
that partitions the set into the classes depicted in Figure 3. We first establish
the following facts.

(1) (f(a), f(b)) == (9(a),g(b)) for every (a,b

(2) If (a,b) == (c, d), then (f(a), f(b)) == (f () ( d))-

(3) If (a,b) == (c, d), then (g(a),g(b)) == (g(c), 9(d))-
The statement in (1) clearly holds if f(a) = g(a) and f(b) = g(b). If f(a) #
g(a), then by the definition of f and g we have that a; = a3 > 1. From
(a,b) € T we get that a; = by. If by = by, then a = b, and we are done by (ii).
If not, then for e := a;—1 we get that f(b) = g(b) = (e, b2), f(a) = (e,e+1) and
g(a) = (e,e). Thus the pair ((e,e + 1), (e, b)) is E-related to ((e,e), (e, b))
by (iv), since e < e +1 = by < ba. The case when f(b) # g(b) follows by
switching a and b. Thus (1) is proved.

—~
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11 12 13 14 22 23 24 33 34 44

FIGURE 3. The partition associated to =.

Next we prove (2) and (3) simultaneously. Suppose that (a,b) =z (c,d).
Clearly if these pairs are equal, or if they are both in the diagonal, then
we are done. Now suppose that case (i74) applies to (a,b) and (¢,d). Thus
a1 = by = ¢ = dy, and be,d2 < az = co. If a3 = 1, then both f and ¢
map a, b, ¢, d to 11, and we are done. If not, then the elements b and d are
mapped by both f and g into the set H = {(a1 —1,z) | a1 — 1<z < ay —1}.
Furthermore, a1 = b; < b < ag implies that f(a) = g(a) = (a1 — 1, a2).
Therefore the elements (f(a),h) are in the same =-class, when h runs over H,
and so we are done. Finally if case (iv) applies to (a,b) and (¢, d), then we can
repeat the argument for case (i7i) by switching the coordinates of the elements
of T. Thus (2) and (3) are established as well.

Now to prove that = is indeed a congruence suppose that (a,b) =z (c, d).
We have to prove for every (u,v) € T that (a,b) * (u,v) =z (¢, d) * (u,v) and
(u,v) * (a,b) =z (u,v) * (c,d). We have the following cases.

If uv € S =R—{rr}, then uxz = v+z = f(x) for every z, and so
(u,v) % (a,b) == (u,v) *(c,d) holds by (2). If either u ¢ S or v ¢ S, then since
(u,v) € T we have both u,v € S, so u =v = rr. In this case, u xx =v*x =
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g(z) for every z, and so (3) applies. Thus (u,v) * (a,b) =z (u,v) * (¢,d) is
proved in any case.

To prove that (a,b) * (u,v) =z (¢, d) * (u,v) we first consider the case when
a,b,c,d € S. Then (a,b)*(u,v) = (f(u), f(v)) = (¢,d)*(u,v), and we are done.
Since the case of a = b = ¢ = d = rr is trivial, we may assume without loss of
generality that a = b = rr and ¢,d € S. Then (a,b) * (u,v) = (g(u), g(v)) and
(e, d)*(u,v) = (f(u), f(v)). Thus (1) implies that (a, b)*(u,v) == (¢, d)*(u,v)
indeed. We have therefore proved the claim, and so = is indeed a congruence.

The congruence = satisfies that the diagonal of R X R is a congruence block.
This implies that [1,%,_1] = 0 by a well-known argument (similar to the one
used in the previous section). O

Lemma 3.4. The right nilpotence degree of R is exactly r.

Proof. First we prove that the right nilpotence degree of R is at least r. We
show by induction that ((i,4),(4,i + 1)) € [1g)" **! for 1 <4 < r. Choose
t(z,y) = = x y. First observe that

(1,1)+(1,1) = f((1,1)) = (1,1) = g((1,1)) = (r,r) * (1, 1) .

Changing the underlined argument from (1,1) to (r,r) we get that (1,1)

(’l“, T) = f((Ta T)) = (’I" - 17T) is related by [lRa 1R] to (Ta ’f‘) * (’l", T) = g((?",?"))
(r — 1,7 —1). Thus our statement is established for i = r — 1.

Now suppose that ((4,1), (1,4 + 1)) € [Lg)"~**! for some i > 1. Then
(1,1) 5 i+ 1) = F((iri + 1)) = (i + 1)) = (r,) 5 (i +1).

Changing the underlined argument to (7, %) we get that (1, 1)*( =
(i — 1,4) is related by [[1g)"~*T1,1] to (r,r) * (i,4) = g((5,i)) = (i — 1,5 — 1).
Thus our statement is established for 7 — 1.

The induction is complete, and so we have, for ¢ = 1, that the distinct
elements (1,1) and (1,2) are related by [1g)". Therefore this is not the zero
congruence, and so the right nilpotence degree of R is at least r.

To finish the proof we must show that the right nilpotence degree of R is
at most r. This follows if we prove that for the congruences 1; defined before
Lemma 3.1 we have that [¢);,1] < ;1 for 1 <i <.

Let C be a nontrivial class of v; for some 1 <4 < r. Then both f and g¢
collapse C into a class of ¥;_1. Since C is nontrivial, C C S = R — {rr}, and
therefore the columns of the operation table of x collapse C' into a class of ¥; 1
as well. It is easy to deduce by direct calculation, or by invoking Lemma 4.3
of [6] that every polynomial p of R satisfies that p(C1,...,Cy) is contained in
a 1;_1-block for every set Cq,...,C, of 1;-blocks. This already implies that

[lp’ia 1] < wi—l- O
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