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The join of two minimal clones
and the meet of two maximal clones

Gábor Czédli, Radomír Halaš, Keith A. Kearnes,
Péter P. Pálfy and Ágnes Szendrei

Dedicated to Ĺaszĺo Szab́o on his 50th birthday

Abstract. We construct two minimal clones on any finite set such that the join of the two clones contains all
operations. Dually, we exhibit two maximal clones on any finite set with at least three elements such that the
intersection of the two clones is the trivial clone containing projections only.

1. Introduction

In this paper we study a feature of the latticeLA of all clones on a finite setA with
|A| > 1. It is known that the latticeLA has finitely many atoms (minimal clones) and
finitely many coatoms (maximal clones), although the lattice itself is infinite; namely,LA

is countable if|A| = 2 and has cardinality of the continuum if|A| ≥ 3. The list of all
maximal clones was found by Rosenberg [7]. The members of this list are described as
clones Pol(ρ) of all operations preserving a relationρ whereρ runs over a specific list of
relations (cf. [5], Section 4.3). In contrast, the classification of the minimal clones is far
from being completed (cf. [6]).

Szab́o [8] has shown that for every finite setA there exist three minimal clones whose
join in LA is the clone of all operations, and dually, there exist three maximal clones whose
intersection is trivial, that is, contains projection operations only. For the case when|A| is
an odd prime number, he was able to show the existence of two minimal and two maximal
clones with the respective properties, and asked whether the same conclusion is true for
every finite setA with |A| ≥ 3. In a recent paper [9] he proved that this is indeed the case
if |A| = 2p for a primep ≥ 5. Our goal in this paper is to show that the answer to Szabó’s
question is affirmative in general.
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THEOREM. (1)On any finite set with at least two elements there exist two minimal
clones such that their join contains all operations.

(2) Dually, on any finite set with at least three elements there exist two maximal clones
whose intersection is trivial.

It is easy to check that no two maximal clones intersect trivially if|A| = 2.
We note that a result of similar nature was proved by Demetrovics and Rónyai [1], and

also by Nozaki, Miyakawa, Pogosyan, and Rosenberg [3]: ifA is a finite set with|A| ≥ 4
then there are two linear orders≤1 and≤2 onA such that the intersection of the maximal
clones Pol(≤1) and Pol(≤2) contains projections and constant operations only.

2. Two minimal clones with a large join

Our aim in this section is to show that on every finite setA with |A| ≥ 2 there exist two
minimal clones whose join is the clone of all operations onA. Several different construc-
tions will be presented which can be found in Propositions 2.3–2.5 and Observation 2.6
below.

Throughout this section we will freely use interchangeable ‘clone terminology’ and
‘algebra terminology’ for the same objects, whichever is more convenient. In particular,
we will use that for a setF of operations onA the clone [F ] generated byF is nothing
else than the clone of term operations of the algebra(A; F), and [F ] is the clone of all
operations onA exactly when(A; F) is primal. Recall also that two algebras — and also
their clones of term operations — are said to be equivalent if there is a third algebra which
is isomorphic to one of them and has the same clone of term operations as the other one.

The first lemma lists the minimal clones that we shall use in our constructions.

LEMMA 2.1. The following operations generate minimal clones:

(1) any permutation of prime order;
(2) any binary operation∗ satisfying the identitiesx ∗ x = x, x ∗ y = y ∗ x,

x ∗ (x ∗ y) = x ∗ y, a so-called2-semilattice operation;
(3) any nontrivial rectangular band operation, i.e., any binary operation◦ satisfying

the identitiesx ◦ x = x, x ◦ (y ◦ z) = (x ◦ y) ◦ z = x ◦ z;
(4) the (lower) median operationm(x, y, z) = (x ∧y)∨ (x ∧ z)∨ (y ∧ z) of any lattice;
(5) the following binary operationf on {1, 2, 3, 4}:

f 1 2 3 4

1 1 1 1 1
2 2 2 2 3
3 2 3 3 3
4 2 4 4 4
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All statements in Lemma 2.1 are known; see [5], 4.4.1 for (1); [2], 5.1(b) for (2); [5],
4.4.4(b) or [2], 5.2(b) for (3); [5], 4.4.5(ii) for (4); and [10], p. 83 for (5).

We want to define two operationsf andg on a given finite setA such that the one-
generated clones [f ] and [g] are minimal, but the clone [f, g] generated by the two opera-
tions together is the clone of all operations. Obviously, we may assume that every operation
arising fromf or g by identification of some variables is a projection. Hence each of these
operations is either unary or it is ak-ary idempotent operation, wherek ≥ 2. If both f

andg are idempotent operations, then they cannot generate all operations, so one of them,
say,g must be unary. Two unary operations cannot generate all operations either, hencef

must be ak-ary idempotent operation for somek ≥ 2. Now observe thatg cannot have any
fixed points, since a fixed point would be a singleton subalgebra of(A; f, g), and hence the
algebra would not be primal. This implies thatg is a fixed-point-free permutation of prime
orderp (see [5], 4.4.1). Clearly,p divides|A|. If p < |A|, then the arity off is at most
p, since otherwise the elements of any cycle ofg would form a subalgebra in(A; f, g),
and hence the algebra would not be primal. These considerations motivate our choice of
operations.

For most finite setsA there are lots of very different pairs of suitable operationsf , g.
To emphasize this feature we will present three essentially different constructions which
work for most, but not all, base sets. However, detailed proof will be given only for the first
construction.

Obviously, our operationsf andg are both surjective. Thus, in order to check that [f, g]
is the clone of all operations we can use the following completeness criterion which can be
obtained directly from [12], Corollary 4.5.

LEMMA 2.2. If a finite algebra has surjective basic operations then it is either a primal
algebra or one of the following conditions holds:

(i) the algebra is abelian, i.e., it satisfies the term condition(see [11], p. 42);
(ii) the algebra has a proper subalgebra;

(iii) the algebra has a nontrivial automorphism;
(iv) the algebra has a proper nontrivial congruence.

Our first construction uses a 2-semilattice operation forf .

PROPOSITION 2.3.LetA be a finite set with|A| 6= 4. There exist two minimal clones
[∗] and [g] on A with ∗ a 2-semilattice operation andg a fixed-point-free permutation of
prime order such that[∗, g] is the clone of all operations.

Proof. If ∗ is a 2-semilattice operation andg is a fixed-point-free permutation of prime
order, then the minimality of [∗] and [g] is guaranteed by Lemma 2.1 (2), (1). We have
to choose∗ andg so that the properties (i)–(iv) listed in Lemma 2.2 fail for the algebra
(A; f, g).
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If |A| = p is a prime number, then we identifyA with {0, 1, . . . , p − 1} and letg =
(0 1. . . p − 1). Then(A; g) is simple and has no proper subalgebras. If we select∗ to be
the operation min, then∗ does not satisfy the term condition and(A; ∗) has no nontrivial
automorphisms. Hence(A; ∗, g) is a primal algebra by Lemma 2.2.

Now assume that|A| is a composite number, and letp be any prime divisor of|A| such
that for the decomposition|A| = pk we havek ≥ 3. Notice that the smallest prime divisor
of |A| can always be chosen to bep, because our assumptions exclude the case|A| = 4.
Let us arrange the elements ofA in ap × k array, and let us defineg so that it permutes the
elements in each column cyclically as shown in Figure 1.

1 2 3 k

Figure 1

To describe the 2-semilattice operation notice first that a binary operation∗ on A is a
2-semilattice operation if and only ifa ∗ a = a for all a ∈ A, and for arbitrary distinct
elementsa, b ∈ A one of the following conditions holds:

• {a, b} is a 2-element semilattice, or
• c = a ∗ b = b ∗ a is different froma, b, and{a, c} as well as{b, c} are semilattices

with a ∗ c = c = b ∗ c.

If two distinct elementsa, b of A form a semilattice such thata ∗ b = b, then we will
draw an arrow froma to b. A 2-semilattice where each pair of distinct elements forms a
semilattice is called a tournament. With the arrow notation just introduced, a tournament
becomes a complete graph where each edge is directed.

Now we are in a position to describe the specific 2-semilattice operation∗ that will
be used to prove the claim of the proposition. Beyond the trivial requirement that∗ is
idempotent, the definition of∗ is given by Figure 2 which is to be interpreted as follows.
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The only two-element subsets that are not subsemilattices are the first two elements in each
column (denoted by dashed boxes in Figure 2), and the product of these two elements is the
top element in the next column where ‘next’ is understood along the cycle in the first row
in Figure 2. There is an arrow between any two other points, however, the direction of the
arrows that are not shown in Figure 2 are irrelevant as long as:

1 2 3 4 k−2 k−1 k

T1

T2

Figure 2

(1) the tournamentsT1 andT2 formed by the first row and by the second row — both
considered as tournaments on the same base set whose elements are numbered by
the columns — have no proper nontrivial common congruences; moreover

(2) the tournamentT2 has no nontrivial automorphisms.

Now we use Lemma 2.2 to show that the algebra(A; ∗, g) is primal. A 2-semilattice is
a non-abelian algebra, hence (i) fails. IfS is a subalgebra of(A; ∗, g) theng forcesS to be
a union of complete columns. HenceS contains an element from the first row. Whenever
i ∈ S is an element in the first row, theni ∗ g(i) is the next element in the first row along
the cycle inT1 as shown in Figure 2. This implies thatS contains the full first row. But
thenS = A, showing that (ii) in Lemma 2.2 fails.

Notice that the first row can be described as the set of all elementsa ∈ A such that
a = a1 ∗ a2 for somea1 6= a anda2 6= a. Thus the setR of elements in the first row is
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preserved by every automorphism of(A; ∗, g). Hence the same holds forg(R), which is
the set of elements in the second row. This set is a subalgebra of(A; ∗), therefore property
(2) implies that every automorphism of(A; ∗, g) fixes the elements in the second row. The
fixed points of an automorphism form a subalgebra, but we have already established that
(A; ∗, g) has no proper subalgebras. Hence(A; ∗, g) has no nontrivial automorphisms
either. Thus (iii) of Lemma 2.2 fails.

Finally we prove that the algebra(A; ∗, g) is simple. We will denote the elements of
the first row by 1, 2, . . . , k; hence the elements of the second row areg(1), g(2), . . . , g(k).
Let ≡ be a congruence of(A; ∗, g) which is distinct from the equality relation. There
exist distinct≡-related elementsi anda such thati is in the first row, because a repeated
application ofg can move any pair of distinct,≡-related elements in that position. We
want to show that there exist two distinct≡-related elements in the first row. Clearly, we
havea ∗ g(i) ≡ i ∗ g(i) = i + 1 where addition is understood modulok. Sincea 6= i,
therefore{a, g(i)} is a subsemilattice of(A; ∗), hencea∗g(i) ∈ {a, g(i)}. In the case when
a∗g(i) = a we get thati ≡ a ≡ i+1, soi andi+1 are≡-related elements in the first row. In
the remaining case whena ∗g(i) = g(i) we get thatg(i) ≡ i +1. Fori = k this means that
g(k) ≡ 1, which implies that 2= 1 ∗ g(1) ≡ g(k) ∗ g(1) = g(1). Hence we may assume
thati < k. Then we obtain thati+2 = (i+1) ∗ g(i+1) ≡ g(i) ∗ g(i+1) = g(i) ≡ i+1,
soi + 1 andi + 2 are≡-related elements in the first row.

Thus the first row contains two distinct≡-related elements. The restriction≡ |T1 of ≡
to the subalgebraT1 of (A; ∗) is a congruence ofT1, and similarly≡ |T2 = g(≡ |T1) is a
congruence ofT2, both distinct from the equality relation. Identifying the base sets ofT1

andT2 via g we see that these congruences yield a common congruence ofT1 andT2. Thus
we conclude by property (1) that≡ |T1 is the full relation inT1, that is, the whole first row
is in the same block of≡. Applying g we see that the same holds for all rows.

Now for the first two elementsu ≡ u′ andg(u) ≡ g(u′) in any two consecutive rows we
haveu′ = g(u) ∗ u′ ≡ g(u′) ∗ u = g(u′). This shows that all rows are in the same block
of ≡, that is,≡ is the full relation.

To conclude the proof we have to exhibit tournamentsT1 and T2 on the base set
{1, 2, . . . , k} such thatT1 andT2 possess the arrows prescribed in Figure 2 and condi-
tions (1)–(2) are satisfied. We will show that we get appropriate tournaments if we direct
every arrow which hasn’t been drawn yet so thati → j iff i > j . In this caseT2 is the
k-element chain with the semilattice operation min, so (2) obviously holds.

If k 6= 4 thenT1 is simple. This is easy to check fork = 3. Fork > 4 the following
observations are enough to verify the claim. If≡ is a congruence ofT1 and 1≤ i, j ≤ k then

1 < j < i, j ≡ i H⇒ j − 1 = i ∗ (j − 1) ≡ j ∗ (j − 1) = j,

1 < i < k, 1 ≡ i H⇒ 1 = 1 ∗ (i + 1) ≡ i ∗ (i + 1) = i + 1,

1 ≡ k H⇒ 1 = 1 ∗ 3 ≡ k ∗ 3 = 3 (if k > 4),

1 ≡ 3 H⇒ 2 = 1 ∗ 2 ≡ 3 ∗ 2 = 3 (hence 1≡ 2).
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In the case whenk = 4 the same observations yield that the only proper nontrivial con-
gruence ofT1 has one nonsingleton block, namely{1, 4}. This is not a congruence ofT2.
Therefore condition (1) is satisfied. ¨

PROPOSITION 2.4.Let A be a finite set such that|A| is a composite number and
|A| 6= 4, 8. There exist two minimal clones[◦] and [g] on A with ◦ a rectangular band
operation andg a fixed-point-free permutation of prime order such that[◦, g] is the clone
of all operations.

REMARK. It is well known that every rectangular band is isomorphic to a semigroup
of the form (I × J ; ◦) whereI, J are arbitrary sets and the operation◦ is defined by
(i, j) ◦ (i′, j ′) = (i, j ′). This shows that if|A| is prime, then every rectangular band
operation is a projection, hence the conclusion of Proposition 2.4 cannot hold. If|A| = 4
or 8 then|I | or |J | must be 2, andg must be of order 2, so by inspecting all possibilities
for g one can check that none of them satisfies the requirements of Proposition 2.4.

Proof. We will present two different constructions to cover all cases that are allowed
for |A|:

(I) |A| = 16k for somek ≥ 1, andg is of order 2;
(II) |A| = pk for some odd primep andk ≥ 2, andg is of orderp.

As the remark above shows, the rectangular band operation◦ is determined by a rectangular
array of the elements ofA. We will think of an element labelled(i, j) as being in rowi

and columnj . Once the rectangular band is so pictured, we will defineg by drawing all
arrowsa → g(a) (a ∈ A). In caseg is of order 2, pairs of opposite arrowsa → g(a) and
g(a) → g2(a) = a will be replaced by an undirected edge connectinga andg(a).

Our construction for case (I) is shown in Figure 3.

a

b

r
1

r
2

c d

q
1

q
2

r
k

q
k

Figure 3

Notice that if we delete the edges that connect the neighboring 4× 4 blocks in a cyclic
manner, then all the 4× 4 blocks except the first one are identical, and the first one is the
transpose of the others.
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For the elementsa, b, c, d indicated in Figure 3 and for the termt (x, y) = x ◦ g(x ◦ y)

we havet (a, c) = t (a, d) and t (b, c) 6= t (b, d). Therefore the algebra(A; ◦, g) is not
abelian. To verify that every element generates(A; ◦, g), one can use the definition of
g and the fact that whenever two elementsu, v belong to a subalgebra, then◦ forces all
four vertices of the rectangle with diameteru, v to belong to the subalgebra. Thus we can
check first that within one block each element generates all others, and then observe that
generation spreads throughout the algebra via the edges connecting the blocks. This shows
that(A; ◦, g) has no proper subalgebras.

The proof that(A; ◦, g) is simple is similar. Notice that the operation◦ spreads congru-
ences as follows: for a congruence≡, if u, v are arbirary≡-related elements, then in the
rows ofu andv each pair of elements in the same column are also≡-related, and dually, in
the columns ofu andv each pair of elements in the same row are also≡-related. Using this
and the definition ofg one can follow the next three steps to show that each congruence≡
of (A; ◦, g) which is distinct from the equality relation must be the full relation.

(i) If there are two distinct≡-related elements in the same column then applyingg

and◦ several times one can always find an elementw in their 4× 4 block so that
w ≡ g(w). Sincew ◦ w = w also holds, it follows that the≡-class containingw is
a subalgebra. But(A; ◦, g) has no proper subalgebras, hence≡ is the full relation.

It remains to consider the case when there are two distinct≡-related elementsu, v in the
same row.

(ii) If u, v are in different 4×4 blocks, but their position within their blocks is the same,
then we can apply the operations◦ andg tou andv in a parallel way till we produce
an≡-related pair such that one of the elements is in the first block. To see that this
is possible we use the fact that each of the elementsu, v generates the algebra.

(iii) All other cases can be reduced to step (i) because one can easily get fromu, v two
≡-related elements which are not in the same row. In most cases one application of
g to ≡-related elements in the columns ofu andv suffices.

Finally we want to show that(A; ◦, g) has no nontrivial automorphisms. Notice that the
following properties are preserved by every automorphism:

P(x) there are 2k distinct elementsy in the row ofx such thatg(x) andg(y) are also in
the same row;

Q(x) x is the only element in its column for whichP(x) holds;
R(x) x is the only element in its column for whichP(x) fails.

It is easy to check that the elements satisfying propertyQ, resp.R are exactly those labelled
q1, q2, . . . , qk, resp. r1, r2, . . . , rk in Figure 3. Thusq1 is the only element satisfying
Q whose row contains an element satisfyingR. Henceq1 is a fixed point of each auto-
morphism. As in Proposition 2.3 we obtain that(A; ◦, g) has no nontrivial automorphisms.
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The construction for case (II) is depicted in Figures 4 and 5, according to whetherk is
even or odd.

a = c d

b

Figure 4

Again, thep × 2 building blocks, except the first one in Figure 4, are identical, and the
first p × 2 block in Figure 4 arises from the others by reversing the arrows in one cycle.
The elementsa, b, c, d shown in both figures and the termst0(x, y) = x ◦ g(x ◦ y) and
t1(x, y) = g2(x ◦ y) ◦ x, respectively, prove that the algebra(A, ◦, g) is not abelian. The
proof that(A, ◦, g) has no proper subalgebras and is simple follows the same lines as in
case (I); the details are omitted.

To prove that(A; ◦, g) has no nontrivial automorphisms, it suffices to observe that —
whetherk is even or odd — the top left element is the only elementx in A such thatgp−1(x)

is in the same row asx andg(x) is in the same column asx. ¨

PROPOSITION 2.5.LetA be a finite set such that|A| is not a power of2 and|A| 6= 6.
There exist two minimal clones[m] and [g] on A with m the lower median operation of a
lattice andg a fixed-point-free permutation of prime order such that[m, g] is the clone of
all operations.

REMARK. The argument preceding Lemma 2.2 together with an inspection of all six-
element lattices show that the scope of the above statement cannot be extended to other
values of|A|.

Proof. Let |A| = n = pk for some primep ≥ 3 andk ≥ 1. The case whenn = p ≥ 3
is a prime is settled in [8] as follows: the lattice producingm is a chain andg sends each
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element, except the top element, to its cover. The case whenn = 2p andp ≥ 5 is included
in [9], where the lattice is the direct product of the two-element lattice and thep-element
modular lattice of length 2.

a = c d

b

Figure 5

Here we will give three different constructions which work for many, but not all, values
of n = pk. The three cases covered by the constructions are as follows:

(I) n = pk ≥ 9 andk ≥ 2 (a modified version works also fork = 1, n = p ≥ 5);
(II) p ≥ 5 andk ≥ 3 (again, a modified version works also fork = 1, 2);

(III) p = 3 andk ≥ 3.

We will write the base setA in the formA = ⋃k
i=1 Ai whereAi = {ai,1, . . . , ai,p} (i =

1, 2, . . . , k) denote theg-orbits; in some cases no more information ong will be relevant.
Notice that the majority operationm does not satisfy the term condition. Furthermore, every
congruence of(A; m, g) is a lattice congruence, for it is preserved byx ∧ y = m(x, y, 0)

andx ∨ y = m(x, y, 1).

(I) For n = pk ≥ 9 andk ≥ 2 letL1 be the lattice depicted in Figure 6. This lattice is
obtained from a fence by adjoining a top and a bottom element. For the elements
of the fence on the right which are not shown in Figure 6 the labels are irrelevant.
SinceL1 is simple, so is the algebra(A; m, g). For subsetsX andY of A let
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m(X) → Y stand for the property that some element of the formm(x, y, z) with
x, y, z ∈ X belongs toY . If k 6= 3 then the equalities

a1,p−1

a2,p−1 a2,p−2 a2,2 a3,2 a4,2 ak,2

ak,p

a1,p

ak,1

ak−1,1 a2,p (if k > 2)a1,p−2
a1,2 a1,1 a2,1 a3,1

Figure 6

m(ak,1, ak,2, ak,p) = ak−1,1,

m(ai,1, ai,2, ai,p) = a1,p (2 ≤ i ≤ k − 1),

m(a1,1, a1,2, a1,p) = a2,2,

m(ai−1,1, ai,1, a1,p) = ai+1,2 (2 ≤ i ≤ k − 1)

show thatm(Ak) → Ak−1,m(Ai) → A1 for 2 ≤ i ≤ k−1, andm(A1∪. . .∪Ai) →
Ai+1 for 1 ≤ i < k. If k = 3 then stepm(A2) → A1 in the argument above may
fail, but it can be replaced bym(A2) → A3 andm(A2∪A3) → A1. Thus(A; m, g)

has no proper subalgebras.
Let us call an elementx ∈ A m-irreducibleif A\{x} is closed with respect tom.

There are exactly threem-irreducible elements: the top elementak,p, the leftmost
elementa1,p−1 which is a coatom, and the rightmost element which is an atom or
coatom depending on the parity ofn. Applying m to these three elements we get
a common fixed point of all automorphisms. Like in the proof of Proposition 2.3,
we conclude that(A; m, g) has no nontrivial automorphisms.

It can be shown that a fenceL1 with bottom and top elements, combined with
an appropriately choseng works also fork = 1, p ≥ 5. For p ∈ {5, 7} the
argument requires further modifications, because the bottom element inL1 is also
m-irreducible and the lattice is not simple.
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(II) For p ≥ 5 andk ≥ 3 letL2 be the lattice given in Figure 7. The previous argument
works with slight modifications. Nowm(A1) → Ak andm(Ai+1) → Ai for
1 ≤ i < k. Only the bottom elementa1,1 has the property that it is the unique
m-reducible element in itsg-orbit, therefore every automorphism fixesa1,1.

a1,2

a1,3 a1,pak,1 ak,2

ak,p
a5,1

a5,3 a5,pa4,1 a4,2

a4,pa4,3
a3,1 a3,2

a3,pa3,3a2,1

a2,3a2,2

a1,1

a2,p

Figure 7

For p ≥ 5 and 1≤ k ≤ 2 the analogues of the latticeL2 with appropriate
changes in the labelling can be shown to work.

(III) For p = 3 andk ≥ 3 let L3 be the lattice in Figure 8, and letg(ai,1) = ai,2,
g(ai,2) = ai,3 and g(ai,3) = ai,1 (1 ≤ i ≤ k). This lattice is not simple.
For lattice congruencesα andβ letg(α) → β denote the property thatg(x)∧g(y) ≤
u < v ≤ g(x) ∨ g(y) for some(x, y) ∈ α and (u, v) ∈ β. The atoms in the
congruence lattice ofL3 are the principal congruences2(ak,2, a1,1), 2(a3,1, ak,2)

and2(ai−1,1, ai,1) for 4 ≤ i ≤ k. We haveg(2(ai−1,1, ai,1)) → 2(ai,1, ai+1,1)

for 4 ≤ i ≤ k − 1, g2(2(ak−1,1, ak,1)) → 2(a1,1, ak,2), g(2(a1,1, ak,2)) →
2(a3,1, ak,2) and g(2(a3,1, ak,2)) → 2(a3,1, a4,1), therefore the simplicity of
(A; m, g) follows easily. Sincem(Ai) → Ai+1 for 1 ≤ i < k, m(Ak) → A2
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and m(A2 ∪ Ak) → A1, we get that(A; m, g) has no proper subalgebras. If
k ≥ 4 thenak−1,1 is the onlym-reducible element such that the other two elements
in its g-orbit arem-irreducible while ifk = 3 thena2,3 is the onlym-irreducible
element. ¤

a1,1

ak,3a2,1

a1,2 a1,3 a2,3
a2,2

a3,2
a3,3a3,1

a4,2
a4,3a4,1

a5,2
a5,3a5,1

ak−3,3

ak−2,1

ak−1,1

ak,1

ak−1,2 ak−1,3

ak−2,2
ak−2,3

a6,1

ak,2

Figure 8

The case|A| = 4 is not covered by any of the constructions in Propositions 2.3–2.5. In
fact, it turns out that this case is very exceptional. As before, our task is to find a binary
idempotent operationf generating a minimal clone and a fixed-point-free permutation
g of order 2 such that [f, g] is the clone of all operations. All minimal clones on the
4-element set which are generated by an idempotent binary operation have been determined
by Szczepara [10]: up to equivalence there are 120 such clones. Going through this list one
can observe the following surprising fact.
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OBSERVATION 2.6. LetA be a4-element set. Up to equivalence there is only one pair
of minimal clones[f ], [g] onA with f a binary idempotent operation andg a fixed-point-
free permutation of order2 such that[f, g] is the clone of all operations.

Proof. To show the existence letf be the binary operation given in Lemma 2.1 (5).
Since{1, 2} and{2, 3} are both subalgebras of(A; f ), the only unary operation that can
be used isg = (1 3)(2 4). The operationf clearly does not satisfy the term condition.
It is straightforward and easy to check that(A; f, g) is simple and it has neither proper
subalgebras, nor nontrivial automorphisms. So Lemma 2.2 yields that [f, g] is the clone of
all operations.

In order to exlude the other 119 binary minimal clones one can use the following criteria:

(a) if every 2-element subset containinga ∈ A is a subalgebra of(A; f ), then{a, g(a)}
is a subalgebra of(A; f, g);

(b) if every 2-element subset not containinga ∈ A is a subalgebra of(A; f ), then
A\{a, g(a)} is a subalgebra of(A; f, g);

(c) if a fixed-point-free permutationh of order 2 is an automorphism of(A; f ), thenh

is an automorphism of(A; f, g) as well.

An application of these criteria leaves only two operations for further consideration, the
one in Lemma 2.1 (5) and the following:

f 1 2 3 4

1 1 1 1 1
2 1 2 1 2
3 3 3 3 3
4 3 2 3 4

(see [10], p. 188). Since{1, 2} and {2, 4} are subalgebras of({1, 2, 3, 4}; f ), only g =
(1 4)(2 3)can be taken in order to avoid subalgebras. However, in this case({1, 2, 3, 4}; f, g)

has a nontrivial congruence with classes{1, 3}, {2, 4}. ¨

3. Two maximal clones with trivial intersection

On a 2-element set there are five maximal clones, and the intersection of any two of them
is nontrivial; this can be easily checked using Post’s lattice (see [5], p. 78). On finite sets
with at least three elements the contrary is true, as we will prove now.
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PROPOSITION 3.1.On every finite set with at least three elements there exist a linear
order ≤ and a fixed-point-free permutationπ such that the intersection of the maximal
clonesPol(≤) andPol(π) is the trivial clone consisting of projections only.

Proof. Let A = {0, 1, 2, . . . , n − 1} with n > 2, let≤ be the natural order onA, and
for a fixed prime divisorp of n let π be the fixed-point-free permutation

π = (0 1. . . p − 1)(p p + 1 . . . 2p − 1) . . . (n − p n − p + 1 . . . n − 1).

It is well known that the clones Pol(≤) and Pol(π) are maximal; see [5], 4.3.7 and 4.3.9.
We will show that the intersection of these clones is trivial.

Suppose the contrary, and letf be a nontrivial operation of minimum arity in the
intersection Pol(≤) ∩ Pol(π). Then any identification of variables turnsf into a pro-
jection, hence býSwierczkowski’s Lemma one of the following cases occurs (see [11],
1.12):

(i) f is a nontrivial unary operation;
(ii) f is a nontrivial binary idempotent operation;

(iii) f is a ternary majority operation;
(iv) f is a Mal’cev operation;
(v) f is ak-ary semiprojection for somek ≥ 3.

We will show case-by-case that no operation of any of the given types belongs to
Pol(≤) ∩ Pol(π).

(i) First observe thatf cannot be a permutation, since≤ admits no nontrivial auto-
morphisms, and hence Pol(≤) contains no nonidentity permutations. Therefore a suit-
able powere of f is a nontrivial unary operation in Pol(≤) ∩ Pol(π) which satisfies
the identitye(e(x)) = e(x). Clearly, the rangeR of e is the set of fixed points ofe.
Moreover,e ∈ Pol(π) implies thatR is closed underπ . Sincee is nontrivial, there
exist i, j ∈ A such thate(i) = j 6= i. We will assume thati < j ; the casei > j

can be handled similarly. Using monotonicity and the fact thatj ∈ R we conclude
that j = e(i) ≤ e(j − 1) ≤ e(j) = j . Hencee(j − 1) = j , and soj − 1 /∈ R.
But R is closed underπ , therefore it follows thatj is the smallest element of aπ -cycle.
Thus

e(j − p) = e(π(j − 1)) = π(e(j − 1)) = π(j) = j + 1 > j = e(j).

In view of j − p < j this contradicts monotonicity.
(ii) For simplicity let us writex ∗ y = f (x, y). First we want to show that∗ restricts to

the set{0, 1} as a projection. Since∗ is idempotent and monotone, we have 0= 0 ∗ 0 ≤
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0 ∗ 1 ≤ 1 ∗ 1 = 1. So 0∗ 1 ∈ {0, 1}, and similarly 1∗ 0 ∈ {0, 1}. Therefore it suffices to
exclude the cases 0∗ 1 = 1 ∗ 0 = 0 and 0∗ 1 = 1 ∗ 0 = 1. The first case is impossible
because it would imply that

(p − 1) ∗ 0 = πp−1(0) ∗ πp−1(1) = πp−1(0 ∗ 1) = πp−1(0) = p − 1

> p − 2 = πp−2(0) = πp−2(1 ∗ 0)

= πp−2(1) ∗ πp−2(0) = (p − 1) ∗ (p − 2)

≥ (p − 1) ∗ 0,

and the second case is impossible because it would imply that

0 ∗ 1 = 1 > 0 = πp−1(1) = πp−1(1 ∗ 0)

= πp−1(1) ∗ πp−1(0) = 0 ∗ (p − 1) ≥ 0 ∗ 1.

Interchanging the variables of∗ if necessary we may assume that∗ restricts to{0, 1} as the
first projection.

We are going to show that∗ is the first projection. To this end let us partition the oper-
ation table of∗ into squares of sizep × p according to the cycles ofπ . Sinceπ is an
automorphism of the algebra(A; ∗), one can easily see that

(†) wheneveru∗ v = u holds throughout a row of a square, then it holds throughout the
whole square.

We will use this property first to conclude thatu∗v = u holds in the top left square. Indeed,
we have

(p − 1) ∗ 0 = πp−1(0) ∗ πp−1(1) = πp−1(0 ∗ 1) = πp−1(0)

= p − 1 = (p − 1) ∗ (p − 1),

so by monotonocity(p − 1) ∗ j = p − 1 for all 0 ≤ j ≤ p − 1. Hence the claim follows
by (†).

Next we argue by induction on the squares in the leftmost stripe of the operation table
thatu ∗ 0 = u for all u < n. Suppose that this has already been established up to some
square, and the next square starts in rowi. Then i is divisible byp. By the induction
hypothesisi − 1 = (i − 1) ∗ 0 ≤ i ∗ 0 ≤ i ∗ i = i, hence eitheri ∗ 0 = i − 1 or i ∗ 0 = i.
In the former case

(i + 1) ∗ 1 = π(i) ∗ π(0) = π(i ∗ 0) = π(i − 1) = i − p

< i − 1 = π(i − 2) = π((i − 2) ∗ 0)

= π(i − 2) ∗ π(0) = (i − 1) ∗ 1,
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a contradiction. So we obtain thati ∗ 0 = i. By idempotence and monotonicity we get
that i ∗ v = i throughout the first row of the square. Hence (†) yields, in particular, that
u ∗ 0 = u throughout the first column of the square, as claimed.

In the last row of the operation table we have(n − 1) ∗ 0 = n − 1 = (n − 1) ∗ (n − 1),
therefore by monotonicity we conclude that every entry in the last row isn − 1. But
then (†) applies to the bottom right square and yields thatu ∗ v = u throughout that
square. Now we can proceed in the rightmost stripe from bottom to top, using induction
the same way as before, to prove thatu ∗ (n − 1) = u for all u < n. Now the equalities
u ∗ 0 = u = u ∗ (n − 1) established for allu < n, combined with monotonicity, show
that∗ is the first projection.

(iii) If f is a ternary majority operation in Pol(≤) anda < b < c are arbitrary elements
in A, thenb = f (a, b, b) ≤ f (a, b, c) ≤ f (b, b, c) = b. Hence the result off applied
to a, b, c is the middle one (with respect to<) of the three elements. The same conclusion
remains true even if we permutea, b, c. This property off can be used to show thatf does
not belong to Pol(π). In fact, if p > 2 then we have

f (π(0), π(1), π(p − 1)) = f (1, 2, 0) = 1 6= 2 = π(1) = π(f (0, 1, p − 1)),

while if p = 2 (and|A| > 2) then we have

f (π(0), π(1), π(2)) = f (1, 0, 3) = 1 6= 0 = π(1) = π(f (0, 1, 2)).

(iv) and (v) It is not hard to verify that Pol(≤) does not contain any Mal’cev operation
or semiprojection, see [4], Lemmas 5 and 7. ¨
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[9] Szabó, L., On minimal and maximal clones II, Acta Cybernetica,13 (1998), 405–411.

[10] Szczepara, B., Minimal clones generated by groupoids, Ph.D. Thesis, Université de Montŕeal, Montŕeal,
1995.
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