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The join of two minimal clones
and the meet of two maximal clones
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Dedicated to szb Szald on his 50th birthday

Abstract. We construct two minimal clones on any finite set such that the join of the two clones contains all
operations. Dually, we exhibit two maximal clones on any finite set with at least three elements such that the
intersection of the two clones is the trivial clone containing projections only.

1. Introduction

In this paper we study a feature of the latticg of all clones on a finite set with
|A| > 1. Itis known that the latticé 4 has finitely many atoms (minimal clones) and
finitely many coatoms (maximal clones), although the lattice itself is infinite; narbgly,
is countable iffA| = 2 and has cardinality of the continuum|i| > 3. The list of all
maximal clones was found by Rosenberg [7]. The members of this list are described as
clones Polp) of all operations preserving a relatiprwherep runs over a specific list of
relations (cf. [5], Section 4.3). In contrast, the classification of the minimal clones is far
from being completed (cf. [6]).

Szald [8] has shown that for every finite satthere exist three minimal clones whose
joinin L 4 is the clone of all operations, and dually, there exist three maximal clones whose
intersection is trivial, that is, contains projection operations only. For the case |when
an odd prime number, he was able to show the existence of two minimal and two maximal
clones with the respective properties, and asked whether the same conclusion is true for
every finite setd with |A| > 3. In a recent paper [9] he proved that this is indeed the case
if |A| = 2p for a primep > 5. Our goal in this paper is to show that the answer to §sab
guestion is affirmative in general.
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THEOREM. (1)On any finite set with at least two elements there exist two minimal
clones such that their join contains all operations.

(2) Dually, on any finite set with at least three elements there exist two maximal clones
whose intersection is trivial.

It is easy to check that no two maximal clones intersect trivial|if= 2.

We note that a result of similar nature was proved by Demetrovics angidR[1], and
also by Nozaki, Miyakawa, Pogosyan, and Rosenberg [3}:if a finite set withA| > 4
then there are two linear orderg and <, on A such that the intersection of the maximal
clones Pol<1) and Pol(<2) contains projections and constant operations only.

2. Two minimal clones with a large join

Our aim in this section is to show that on every finite 4atith |[A| > 2 there exist two
minimal clones whose join is the clone of all operationsforSeveral different construc-
tions will be presented which can be found in Propositions 2.3-2.5 and Observation 2.6
below.

Throughout this section we will freely use interchangeable ‘clone terminology’ and
‘algebra terminology’ for the same objects, whichever is more convenient. In particular,
we will use that for a sef’ of operations o the clone F] generated by is nothing
else than the clone of term operations of the alg&lraF), and [F] is the clone of all
operations oM exactly when(A; F) is primal. Recall also that two algebras — and also
their clones of term operations — are said to be equivalent if there is a third algebra which
is isomorphic to one of them and has the same clone of term operations as the other one.

The first lemma lists the minimal clones that we shall use in our constructions.

LEMMA 2.1. The following operations generate minimal clones:

(1) any permutation of prime order;

(2) any binary operationx satisfying the identitiess * x = x,x xy = y * x,
x % (x * y) = x * y, a so-called2-semilattice operation;

(3) any nontrivial rectangular band operation, i.e., any binary operatiosatisfying
the identitiescox = x,x o0 (yoz) = (x oy) oz =x 0 Z;

(4) the (lower) median operatian(x, y,z) = (x Ay) V (x Az) V (¥ Az) of any lattice;

(5) the following binary operatiory on {1, 2, 3, 4}:

fl1 2 3 a

1
3
3
4

A WN P

1
2
3
4

NNDN PP

1
2
3
4
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All statements in Lemma 2.1 are known; see [5], 4.4.1 for (1); [2], 5.1(b) for (2); [5],
4.4.4(b) or [2], 5.2(b) for (3); [5], 4.4.5(ii) for (4); and [10], p. 83 for (5).

We want to define two operations and g on a given finite sei such that the one-
generated cloneg] and [¢] are minimal, but the clonef] g] generated by the two opera-
tions together is the clone of all operations. Obviously, we may assume that every operation
arising fromy or g by identification of some variables is a projection. Hence each of these
operations is either unary or it iskaary idempotent operation, wheke> 2. If both f
andg are idempotent operations, then they cannot generate all operations, so one of them,
say,g must be unary. Two unary operations cannot generate all operations eitherfhence
must be &-ary idempotent operation for sorhe> 2. Now observe that cannot have any
fixed points, since a fixed point would be a singleton subalgebta;of, g), and hence the
algebra would not be primal. This implies thais a fixed-point-free permutation of prime
orderp (see [5], 4.4.1). Clearlyp divides|A|. If p < |A], then the arity off is at most
p, since otherwise the elements of any cyclegzofould form a subalgebra it4; f, g),
and hence the algebra would not be primal. These considerations motivate our choice of
operations.

For most finite setst there are lots of very different pairs of suitable operatigng.

To emphasize this feature we will present three essentially different constructions which
work for most, but not all, base sets. However, detailed proof will be given only for the first
construction.

Obviously, our operationg andg are both surjective. Thus, in order to check thatd]
is the clone of all operations we can use the following completeness criterion which can be
obtained directly from [12], Corollary 4.5.

LEMMA 2.2. If afinite algebra has surjective basic operations then it is either a primal
algebra or one of the following conditions holds:

(i) the algebra is abelian, i.e., it satisfies the term condifisee [11], p. 42)
(i) the algebra has a proper subalgebra;
(i) the algebra has a nontrivial automorphism;
(iv) the algebra has a proper nontrivial congruence.

Ouir first construction uses a 2-semilattice operationffor

PROPOSITION 2.3 .Let A be afinite set withA| # 4. There exist two minimal clones
[*¥] and[g] on A with % a 2-semilattice operation and a fixed-point-free permutation of
prime order such thalx, ¢] is the clone of all operations.

Proof. If x is a 2-semilattice operation ads a fixed-point-free permutation of prime
order, then the minimality of{] and [¢] is guaranteed by Lemma 2.1 (2), (1). We have
to choosex andg so that the properties (i)—(iv) listed in Lemma 2.2 fail for the algebra

(A; f, 9).
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If |A| = p is a prime number, then we identi# with {0, 1, ..., p — 1} and letg =
(01... p—1). Then(4; g) is simple and has no proper subalgebras. If we seléatbe
the operation min, thes does not satisfy the term condition atdl; x) has no nontrivial
automorphisms. Hena®; x, g) is a primal algebra by Lemma 2.2.

Now assume thgt| is a composite number, and letbe any prime divisor ofA| such
that for the decompositiofd| = pk we havek > 3. Notice that the smallest prime divisor
of |A| can always be chosen to Ipg because our assumptions exclude the ¢ase= 4.
Let us arrange the elements4fin a p x k array, and let us defingso that it permutes the
elements in each column cyclically as shown in Figure 1.

1 2 3 k
Tt
Y Y Y
Figure 1

To describe the 2-semilattice operation notice first that a binary operationA is a
2-semilattice operation if and only if x a = a for all a € A, and for arbitrary distinct
elements:, b € A one of the following conditions holds:

e {a, b} is a 2-element semilattice, or
e ¢ = a xb = b xa is different froma, b, and{a, c} as well agp, ¢} are semilattices
withaxc=c=bxc.

If two distinct elements:, b of A form a semilattice such thatx » = b, then we will
draw an arrow fronu to . A 2-semilattice where each pair of distinct elements forms a
semilattice is called a tournament. With the arrow notation just introduced, a tournament
becomes a complete graph where each edge is directed.

Now we are in a position to describe the specific 2-semilattice operatitiat will
be used to prove the claim of the proposition. Beyond the trivial requirement tisat
idempotent, the definition of is given by Figure 2 which is to be interpreted as follows.
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The only two-element subsets that are not subsemilattices are the first two elements in each
column (denoted by dashed boxes in Figure 2), and the product of these two elements is the
top element in the next column where ‘next’ is understood along the cycle in the first row
in Figure 2. There is an arrow between any two other points, however, the direction of the
arrows that are not shown in Figure 2 are irrelevant as long as:

Figure 2

(1) the tournament®; and 7> formed by the first row and by the second row — both
considered as tournaments on the same base set whose elements are numbered by
the columns — have no proper nontrivial common congruences; moreover

(2) the tournamenity has no nontrivial automorphisms.

Now we use Lemma 2.2 to show that the algettax, g) is primal. A 2-semilattice is
a non-abelian algebra, hence (i) fails Slis a subalgebra qf4; *, g) theng forcessS to be
a union of complete columns. HenSecontains an element from the first row. Whenever
i € Sis an element in the first row, thenx g(i) is the next element in the first row along
the cycle inTy as shown in Figure 2. This implies th&tcontains the full first row. But
thenS = A, showing that (ii) in Lemma 2.2 fails.

Notice that the first row can be described as the set of all eleraertsA such that
a = aj * ap for somea; # a andaz # a. Thus the seR of elements in the first row is
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preserved by every automorphism(ef; *, g). Hence the same holds fg(R), which is

the set of elements in the second row. This set is a subalgelba ef, therefore property

(2) implies that every automorphism @4; x, g) fixes the elements in the second row. The
fixed points of an automorphism form a subalgebra, but we have already established that
(A; %, g) has no proper subalgebras. Herige x, g) has no nontrivial automorphisms
either. Thus (iii) of Lemma 2.2 fails.

Finally we prove that the algebi@; «, g) is simple. We will denote the elements of
the firstrow by 12, ..., k; hence the elements of the second rowg®, g(2), ..., g(k).

Let = be a congruence dfa; %, g) which is distinct from the equality relation. There
exist distinct=-related elementsanda such that is in the first row, because a repeated
application ofg can move any pair of distincts-related elements in that position. We
want to show that there exist two distinetrelated elements in the first row. Clearly, we
havea * g(i) = i * g(i) = i + 1 where addition is understood modulo Sincea # i,
thereforgla, g(i)} is a subsemilattice afA; x), hencar x g (i) € {a, g(i)}. Inthe case when
axg(i) = awegetthal = a = i+1, soi andi +1 are=-related elementsin the firstrow. In
the remaining case wherx g(i) = g(i) we getthag (i) =i + 1. Fori = k this means that
g(k) = 1, which impliesthat 2= 1 * g(1) = g(k) * g(1) = g(1). Hence we may assume
thati < k. Thenweobtainthat+-2 = (i+1) x g(+1) = g(@) * g +1) = g(i) =i +1,
soi + 1 andi + 2 are=-related elements in the first row.

Thus the first row contains two distinet-related elements. The restrictien |y, of =
to the subalgebrd; of (A; x) is a congruence dfy, and similarly= |, = g(= |ry) isa
congruence of’», both distinct from the equality relation. Identifying the base sets; of
andT> via g we see that these congruences yield a common congruefiganfi7>. Thus
we conclude by property (1) that |7, is the full relation inT3, that is, the whole first row
is in the same block o&. Applying ¢ we see that the same holds for all rows.

Now for the first two elements = u’ andg (1) = g(«’) in any two consecutive rows we
haveu' = g(u) xu’ = g(u’) * u = g(u’). This shows that all rows are in the same block
of =, that is,= is the full relation.

To conclude the proof we have to exhibit tournamehtsand 7> on the base set
{1,2,...,k} such that7; and 7> possess the arrows prescribed in Figure 2 and condi-
tions (1)—(2) are satisfied. We will show that we get appropriate tournaments if we direct
every arrow which hasn't been drawn yet so that- j iff i > j. In this caseTls is the
k-element chain with the semilattice operation min, so (2) obviously holds.

If £ £ 4 thenTy is simple. This is easy to check féor= 3. Fork > 4 the following
observations are enough to verify the claim=lis a congruence df; and 1< i, j < kthen

l<j<i,j=i = j-1l=ix(-D=jx( -1 =/,

l<i<k,l=i = 1=1x(+D)=ix@(+1)=i+1,
l=%kk = 1=1x3=kx3=3 (fk>4),
1= = 2=1%x2=3%x2=3 (hencel=2).
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In the case whek = 4 the same observations yield that the only proper nontrivial con-
gruence off; has one nonsingleton block, namélly 4}. This is not a congruence @b.
Therefore condition (1) is satisfied. O

PROPOSITION 2.4Let A be a finite set such that| is a composite number and
|A| # 4,8. There exist two minimal clongs] and[g] on A with o a rectangular band
operation andg a fixed-point-free permutation of prime order such thatg] is the clone
of all operations.

REMARK. It is well known that every rectangular band is isomorphic to a semigroup
of the form (I x J; o) wherel, J are arbitrary sets and the operations defined by
(i, j) o (i’, j) = (i, j). This shows that ifA| is prime, then every rectangular band
operation is a projection, hence the conclusion of Proposition 2.4 cannot hokl. & 4
or 8 then|I| or |J| must be 2, ang must be of order 2, so by inspecting all possibilities
for g one can check that none of them satisfies the requirements of Proposition 2.4.

Proof. We will present two different constructions to cover all cases that are allowed
for |Al:

() |A] = 16k for somek > 1, andg is of order 2;
(I JA| = pk for some odd primg andk > 2, andg is of orderp.

As the remark above shows, the rectangular band operatsatetermined by a rectangular
array of the elements of. We will think of an element labelled, j) as being in row
and columnj. Once the rectangular band is so pictured, we will defirey drawing all
arrowsa — g(a) (a € A). In caseg is of order 2, pairs of opposite arrows— g(a) and
g(a) — g%(a) = a will be replaced by an undirected edge connectirandg (a).

Our construction for case (1) is shown in Figure 3.

TN TN

Figure 3

Notice that if we delete the edges that connect the neighborirgtdblocks in a cyclic
manner, then all the 4 4 blocks except the first one are identical, and the first one is the
transpose of the others.
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For the elements, b, ¢, d indicated in Figure 3 and for the tertx, y) = x o g(x o y)
we havet(a, c) = t(a,d) andt(b,c) # t(b,d). Therefore the algebré4; o, g) is not
abelian. To verify that every element generatdso, g), one can use the definition of
g and the fact that whenever two elements belong to a subalgebra, therforces all
four vertices of the rectangle with diameterv to belong to the subalgebra. Thus we can
check first that within one block each element generates all others, and then observe that
generation spreads throughout the algebra via the edges connecting the blocks. This shows
that(A; o, g) has no proper subalgebras.

The proof thalA; o, g) is simple is similar. Notice that the operatiespreads congru-
ences as follows: for a congruenege if u, v are arbirary=-related elements, then in the
rows ofu andv each pair of elements in the same column are &lgelated, and dually, in
the columns ofi andv each pair of elements in the same row are als@lated. Using this
and the definition of one can follow the next three steps to show that each congruence
of (A; o, g) which is distinct from the equality relation must be the full relation.

(i) If there are two distinct=-related elements in the same column then applying
ando several times one can always find an elemern their 4 x 4 block so that
w = g(w). Sincew o w = w also holds, it follows that thes-class containingy is
a subalgebra. But4; o, g) has no proper subalgebras, heecis the full relation.

It remains to consider the case when there are two distiaalated elements, v in the
same row.

(i) If u, vareindifferent 4 4 blocks, but their position within their blocks is the same,
then we can apply the operationandg to u andv in a parallel way till we produce
an=-related pair such that one of the elements is in the first block. To see that this
is possible we use the fact that each of the elemenigyenerates the algebra.

(i) All other cases can be reduced to step (i) because one can easily get,fiotwo
=-related elements which are not in the same row. In most cases one application of
g to =-related elements in the columnswéndv suffices.

Finally we want to show thatA; o, g) has no nontrivial automorphisms. Notice that the
following properties are preserved by every automorphism:

P(x) there are R distinct elements in the row ofx such tha (x) andg(y) are also in
the same row;

Q(x) x isthe only element in its column for which(x) holds;

R(x) x isthe only element in its column for which(x) fails.

Itis easy to check that the elements satisfying prop@rtsesp.R are exactly those labelled
q1,92, - - -, qk, Y€esp. r1,ra, ..., ri in Figure 3. Thug; is the only element satisfying
0 whose row contains an element satisfyiRg Henceg; is a fixed point of each auto-
morphism. As in Proposition 2.3 we obtain thidt, o, g) has no nontrivial automorphisms.



Vol. 45, 2001 The join of two minimal clones and the meet of two maximal clones 169

The construction for case (Il) is depicted in Figures 4 and 5, according to whiether
even or odd.

Figure 4

Again, thep x 2 building blocks, except the first one in Figure 4, are identical, and the
first p x 2 block in Figure 4 arises from the others by reversing the arrows in one cycle.
The elements, b, ¢, d shown in both figures and the termsx, y) = x o g(x o y) and
r1(x, y) = g%(x o y) o x, respectively, prove that the algehir&, o, g) is not abelian. The
proof that(A, o, g) has no proper subalgebras and is simple follows the same lines as in
case (I); the details are omitted.

To prove that(4; o, g) has no nontrivial automorphisms, it suffices to observe that —
whetherk is even or odd — the top left element is the only elemeintA such thag?~1(x)
is in the same row as andg(x) is in the same column as O

PROPOSITION 2.5.Let A be afinite set such tha#t| is not a power o2 and|A| # 6.
There exist two minimal clonés:] and[g] on A with m the lower median operation of a
lattice andg a fixed-point-free permutation of prime order such that g] is the clone of
all operations.

REMARK. The argument preceding Lemma 2.2 together with an inspection of all six-
element lattices show that the scope of the above statement cannot be extended to other
values of|A|.

Proof. Let |A| = n = pk for some primep > 3 andk > 1. The case whemn=p > 3
is a prime is settled in [8] as follows: the lattice producinds a chain ang sends each
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element, except the top element, to its cover. The case wkhep andp > 5is included
in [9], where the lattice is the direct product of the two-element lattice angtalement
modular lattice of length 2.

Figure 5

Here we will give three different constructions which work for many, but not all, values
of n = pk. The three cases covered by the constructions are as follows:

() n = pk > 9 andk > 2 (a modified version works also fér=1,n = p > 5);
(I p > 5andk > 3 (again, a modified version works also foe 1, 2);
1y p =3andk > 3.

We will write the base set in the formA = Ule A; whereA; = {a;1,...,a;p) (i =
1,2,..., k) denote thez-orbits; in some cases no more informationgowill be relevant.
Notice that the majority operatiom does not satisfy the term condition. Furthermore, every
congruence ofA; m, g) is a lattice congruence, for it is preservedxoy y = m(x, y, 0)
andx vy =m(x,y,1).

() Forn = pk > 9 andk > 2 let L1 be the lattice depicted in Figure 6. This lattice is
obtained from a fence by adjoining a top and a bottom element. For the elements
of the fence on the right which are not shown in Figure 6 the labels are irrelevant.
Since L1 is simple, so is the algebr@; m, g). For subsets andY of A let
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m(X) — Y stand for the property that some element of the fertw, y, z) with
x,y,z € X belongs toY. If k£ # 3 then the equalities

Sp

Figure 6

m(ag,1, i,2, ak,p) = Q-1,1,
m(a;i 1, ai 2, Gi,p) = aip 2<i<k-1),
m(ai1,a1,2,a1,p) = a2,

m(aj—11,a;1,a1,p) = Gi4+172 2<i<k-1

showthain(Ar) — Ar_1,m(A;) - Arfor2 <i <k-—1,andn(A1U...UA;) —
Ajprforl <i < k. If k = 3then stepn(A2) — A1 in the argument above may
fail, butit can be replaced by(A2) — Azandm(A2UA3) — A1. Thus(A; m, g)
has no proper subalgebras.

Let us call an element € A m-irreducibleif A\{x} is closed with respect t@.
There are exactly three-irreducible elements: the top element,, the leftmost
elementay ,_; which is a coatom, and the rightmost element which is an atom or
coatom depending on the parity of Applying m to these three elements we get
a common fixed point of all automorphisms. Like in the proof of Proposition 2.3,
we conclude thatA; m, g) has no nontrivial automorphisms.

It can be shown that a fende; with bottom and top elements, combined with
an appropriately choses works also fork = 1, p > 5. Forp € {5,7} the
argument requires further modifications, because the bottom elemépisralso
m-irreducible and the lattice is not simple.
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(I) For p = 5andk > 3letL; be the lattice given in Figure 7. The previous argument
works with slight modifications. Nowt: (A1) — Ay andm(A;11) — A; for
1 < i < k. Only the bottom element; 1 has the property that it is the unique
m-reducible element in itg-orbit, therefore every automorphism fixes; .

A2

A1 Ap

Ap

Figure 7

For p > 5and 1< k < 2 the analogues of the lattide, with appropriate
changes in the labelling can be shown to work.

(1) For p = 3 andk > 3 let L3 be the lattice in Figure 8, and lgtla; 1) = a; 2,
glai2) = aizandg(a;3) = ai1 (1 < i < k). This lattice is not simple.
For lattice congruencesandg letg (o) — B denote the property thatx)Ag(y) <
u < v < gkx) Vv gy for some(x, y) € « and(u,v) € B. The atoms in the
congruence lattice df3 are the principal congruenc€gay 2, a1.1), © (a3 1, ax.2)
and®(a;_1,1,a;1) for4 <i < k. We haveg(®(a;—1,1, a;,1)) = ©O(a; 1, ai+1,1)
ford <i < k-1, g%(O(ar-11,ar1) — O(ar1, ax2), g(O(ar1, ax2)) —
®(az.1, ar.2) and g(O(az 1, ax2)) — ©O(az1,aa 1), therefore the simplicity of
(A; m, g) follows easily. Sincen(A;) — A;jy1forl <i < k, m(Ay) —> Az
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andm(Ap2 U Ay) — Aj, we get that(A; m, g) has no proper subalgebras. If
k > 4 thenay_11 is the onlym-reducible element such that the other two elements
in its g-orbit arem-irreducible while ifk = 3 thenay 3 is the onlym-irreducible
element. d

Figure 8

The caséA| = 4 is not covered by any of the constructions in Propositions 2.3-2.5. In
fact, it turns out that this case is very exceptional. As before, our task is to find a binary
idempotent operatiorf generating a minimal clone and a fixed-point-free permutation
g of order 2 such thatf, g] is the clone of all operations. All minimal clones on the
4-element set which are generated by an idempotent binary operation have been determined
by Szczepara [10]: up to equivalence there are 120 such clones. Going through this list one
can observe the following surprising fact.
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OBSERVATION 2.6. Let A be a4-element set. Up to equivalence there is only one pair
of minimal clone$ 11, [g] on A with f a binary idempotent operation argda fixed-point-
free permutation of orde2 such thaf f, ¢] is the clone of all operations.

Proof. To show the existence let be the binary operation given in Lemma 2.1 (5).
Since{1, 2} and{2, 3} are both subalgebras ¢f; f), the only unary operation that can
be used i = (13)(24). The operationf clearly does not satisfy the term condition.
It is straightforward and easy to check that; f, g) is simple and it has neither proper
subalgebras, nor nontrivial automorphisms. So Lemma 2.2 yieldsfheltis the clone of
all operations.

In order to exlude the other 119 binary minimal clones one can use the following criteria:

(a) if every 2-element subset containing A is a subalgebra af4; f), then{a, g(a)}
is a subalgebra dfA; f, g);

(b) if every 2-element subset not containinge A is a subalgebra ofA; f), then
A\{a, g(a)} is a subalgebra fA; f, g);

(c) if a fixed-point-free permutatioh of order 2 is an automorphism o4; f), thenh
is an automorphism dfA; f, g) as well.

An application of these criteria leaves only two operations for further consideration, the
one in Lemma 2.1 (5) and the following:

AWN P[>
WWR BR[|,
N WN R[N
WWRRP|Ww
A WN R[N

(see [10], p. 188). Sincél, 2} and{2, 4} are subalgebras at1, 2,3, 4}; f), only g =
(14)(2 3) canbetakeninorderto avoid subalgebras. However, inthigfhse 3, 4}; £, g)
has a nontrivial congruence with clas$&s3}, {2, 4}. O

3. Two maximal clones with trivial intersection

On a 2-element set there are five maximal clones, and the intersection of any two of them
is nontrivial; this can be easily checked using Post’s lattice (see [5], p. 78). On finite sets
with at least three elements the contrary is true, as we will prove now.
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PROPOSITION 3.1.0n every finite set with at least three elements there exist a linear
order < and a fixed-point-free permutation such that the intersection of the maximal
clonesPol (<) andPol () is the trivial clone consisting of projections only.

Proof. LetA ={0,1,2,...,n — 1} withn > 2, let < be the natural order oA, and
for a fixed prime divisotp of n let = be the fixed-point-free permutation

r=01...p—-D(pp+1...2p-1)...n—pn—p+1...n-1).

Itis well known that the clones P¢k) and Pokr) are maximal; see [5], 4.3.7 and 4.3.9.
We will show that the intersection of these clones is trivial.

Suppose the contrary, and I¢t be a nontrivial operation of minimum arity in the
intersection Pol<) N Pol(r). Then any identification of variables turrsinto a pro-
jection, hence b{Swierczkowski’s Lemma one of the following cases occurs (see [11],
1.12):

(i) f isanontrivial unary operation;
(i) f is a nontrivial binary idempotent operation;
(i) f is a ternary majority operation;
(iv) f is a Mal'cev operation;
(v) f is ak-ary semiprojection for some> 3.

We will show case-by-case that no operation of any of the given types belongs to
Pol(<) N Pol(m).

(i) First observe thaff cannot be a permutation, singe admits no nontrivial auto-
morphisms, and hence R@t) contains no nonidentity permutations. Therefore a suit-
able powere of f is a nontrivial unary operation in Pok) N Pol(sr) which satisfies
the identitye(e(x)) = e(x). Clearly, the rangeR of e is the set of fixed points of.
Moreover,e € Pol(r) implies thatR is closed underr. Sincee is nontrivial, there
existi, j € A such thate(i) = j # i. We will assume that < j; the case > j
can be handled similarly. Using monotonicity and the fact that R we conclude
thatj = e(i) < e(j —1) < e(j) = j. Hencee(j — 1) = j,and soj —1 ¢ R.

But R is closed underr, therefore it follows thay is the smallest element ofra-cycle.
Thus

ej—p=e@(j-D)=a(j-D)=n()=j+1>j=e(p.

In view of j — p < j this contradicts monotonicity.
(i) For simplicity let us writex * y = f(x, y). First we want to show that restricts to
the set{0, 1} as a projection. Sinceis idempotent and monotone, we have-Q0 % 0 <
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O0x1<1x1=1.So0«1e {0, 1}, and similarly 1x 0 € {0, 1}. Therefore it suffices to
exclude the cases®01 = 1x0=0and 0x 1 = 1% 0 = 1. The first case is impossible
because it would imply that
(p—1D*0 = 7?20 x 72?1V =720+ =710 =p—1
> p—2=nP"20) =7""?(1%0)
= 72’20 =(p-D*(p-2)
(p—1 %0,

v

and the second case is impossible because it would imply that

0%x1 = 1>0=n""Y1) ==""11%0)
= 7” Q)x7P 1 0)=0%(p—1) > 0x 1.

Interchanging the variables efif necessary we may assume thaestricts tof0, 1} as the
first projection.

We are going to show thatis the first projection. To this end let us partition the oper-
ation table ofx into squares of size¢ x p according to the cycles of. Sincer is an
automorphism of the algeb(a; x), one can easily see that

() whenever % v = u holds throughout a row of a square, then it holds throughout the
whole square.

We will use this property first to conclude that v = u holds in the top left square. Indeed,
we have

7?7 10) x 7?7 11) = 7?10 % 1) = 7?7 1(0)
p—1l=(@-D=*(p-1,

(p—1)*0

so by monotonocityp — 1)« j = p —1forall0 < j < p — 1. Hence the claim follows
by (1).

Next we argue by induction on the squares in the leftmost stripe of the operation table
thatu = 0 = u for all u < n. Suppose that this has already been established up to some
square, and the next square starts in fowr'heni is divisible by p. By the induction

hypothesis —1=( —1)«*0<i*x0<i*i=1i,henceeitherx0=i—1ori*x0=1.
In the former case
(+D*x1 = a@)*xm(0)=n((*x0)=na(( -1 =i—p

<i—-1=n(—-2)=n((i —2)%0)
=a(i—-2)x7(0)=(G—1) %1,
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a contradiction. So we obtain that- 0 = i. By idempotence and monotonicity we get
thati x v = i throughout the first row of the square. Hence (1) yields, in particular, that
u * 0 = u throughout the first column of the square, as claimed.

In the last row of the operation table we haue— 1) x0=n—1= (1 —1) x (n — 1),
therefore by monotonicity we conclude that every entry in the last row4s1. But
then (1) applies to the bottom right square and yields tha v = u throughout that
square. Now we can proceed in the rightmost stripe from bottom to top, using induction
the same way as before, to prove thak (n — 1) = u for all u < n. Now the equalities
u*x 0=u=u * (n— 1) established for alk < n, combined with monotonicity, show
thatx is the first projection.

(i) If f is aternary majority operation in Pgt) anda < b < ¢ are arbitrary elements
in A, thenb = f(a,b,b) < f(a,b,c) < f(b,b,c) = b. Hence the result of applied
toa, b, c is the middle one (with respect to) of the three elements. The same conclusion
remains true even if we permuieb, c. This property off can be used to show thtdoes
not belong to Polx). In fact, if p > 2 then we have

f@@), 7D, n(p—-D)=f(1,200=1#2=71) =n(f(0,1, p—-1),

while if p = 2 (and|A| > 2) then we have

f@ ), 7(D),7(2) = f(1,0,3 =1#0=n(1) =7(f(0,1,2)).

(iv) and (v) It is not hard to verify that Pdk) does not contain any Mal’'cev operation
or semiprojection, see [4], Lemmas 5 and 7. O
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