
CLONES OF FINITE GROUPS

KEITH A. KEARNES AND ÁGNES SZENDREI

Abstract. If G is a finite group whose Sylow subgroups are abelian, then the
term operations of G are determined by the subgroups of G×G×G.

1. Introduction

Suppose that G is a group and that f : Gn → G is a function. How can we tell if
there is a group word w = w(x1, . . . , xn) whose interpretation in G is f?
An operation f : Gn → G is called a term operation of G if it is represented by

a word (or term), and the collection of all term operations is called the clone of G.
Our question, therefore, is how to determine membership in the clone of G. Since
the subgroups of powers of G are closed under all operations represented by words,
an obvious necessary condition for f to be a term operation is that all subgroups of
Gκ be closed under f for all κ. This necessary condition turns out to be sufficient,
and if G is finite, the necessary and sufficient condition is that all subgroups of Gk

be closed under f for all finite k (see Corollary 1.4 of [5]). In fact, it may be true
that one does not have to check that all finite powers of G are closed under f , but
only that for some large k the subgroups of Gk are closed under f . In this paper we
prove that if G has abelian Sylow subgroups and all subgroups of G3 are preserved
by f , then f is a term operation.
A problem with a long history was to determine whether every group is determined

up to isomorphism by the subgroup lattices of its finite powers (cf. [4], in particular
Problem 7.6.11). This problem was often formulated in the following stronger form: If
Sub(G3) is isomorphic to Sub(H3), then must G be isomorphic to H? Both problems
were resolved negatively in [3], but the result in this paper gives a related positive
result. Suppose that G and H are finite groups with abelian Sylow subgroups, defined
on the same set, and Sub(G3) = Sub(H3). Then G and H are term equivalent
(which means that they have the same term operations). Thus, Sub(G3) = Sub(H3)
implies Sub(Gκ) = Sub(Hκ) for all κ (but this is not enough to imply that G ∼= H).
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2. Groups With Abelian Sylow Subgroups

Our goal is to prove the following theorem.

Theorem 2.1. Let G be a finite group whose Sylow subgroups are abelian. A finitary
operation f on the underlying set of G is a term operation of G if and only if all
subgroups of G×G×G are closed under f .

In fact, we will prove more. In Theorem 2.21 we will exhibit a relatively small
family F of subgroups of G × G × G such that for f to be a term operation it is
enough to test that all members of F are closed under f . Either of Theorems 2.1 or
2.21 implies that if G and H are defined on the same set and Sub(G3) = Sub(H3),
then G and H are term equivalent.
The proof of Theorem 2.1 (or Theorem 2.21) will proceed as follows. First we

reduce the study of all subgroups of finite powers of G to the study of a family of
subgroups of products of sections of G. (A section is a quotient of a subgroup.) We
give a complete description for these ‘reduced’ subgroups, and use this description to
define a family F of subgroups of G3 such that, for f to be a term operation of G, it
is enough to test that all members of F are closed under f . From this we conclude
the proof of Theorem 2.21.
Let n be a positive integer, and for 1 ≤ i ≤ n let Si be arbitrary finite groups. For

any nonempty subset I of {1, . . . , n} we let prI denote the projection homomorphism

prI :
n∏

i=1

Si →
∏

i∈I

Si.

Definition 2.2. A subgroup S of
∏
Si is subdirect if pri(S) = Si for every i. The

i-th coordinate kernel Ni of S is the subgroup of Si defined by

Ni = {s ∈ Si : (1, . . . , 1,
i
`

s, 1, . . . , 1) ∈ S}.

A subdirect subgroup H of a product
∏
Hi of two or more groups is reduced if

(1) |Hi| > 1 for all i,
(2) H has trivial coordinate kernels, and
(3) H is meet irreducible in the lattice of subgroups of

∏
Hi.

Note that conditions (1) and (2) imply that H is a proper subgroup of
∏
Hi. Hence

it follows from (3) that if H is reduced, then it has a unique upper cover in the lattice
of subgroups of

∏
Hi.

The next lemma reduces the study of subgroups of finite powers of G to the study
of reduced subgroups of direct products of sections of G.

Lemma 2.3. Let G be a group, and let S be a subgroup of Gn for some n ≥ 2. For
1 ≤ i ≤ n let Si = pri(S) be the i-th projection, and let Ni be the i-th coordinate
kernel of S.
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(1) Ni is a normal subgroup of Si for each i, and N =
∏
Ni is a normal subgroup

of S;
(2) the quotient group H = S/N is a subdirect subgroup of the group

∏
Hi where

Hi = Si/Ni; and
(3) H has trivial coordinate kernels; equivalently, the projection homomorphism

prI : H → prI(H) is bijective for any (n− 1)-element subset I of {1, . . . , n}.

Moreover,

(4) if S is meet irreducible in the lattice of subgroups of Gn then H is meet irreducible
in the lattice of subgroups of

∏
Hi.

Proof. For (1), the subgroup Ki of S consisting of all elements (1, . . . , 1,
i
`

s, 1, . . . , 1) ∈
S is the intersection of S with the kernel of the homomorphism prI for I =
{1, 2, . . . , i − 1, i + 1, . . . , n}, so Ki is normal in S. Since Ki C S, pri(Ki) = Ni,
and pri(S) = Si, it follows that Ni C Si. The product

∏
Ni is the join of the Ki, so

this product is normal in S.
For (2), compose the projection homomorphism pri : S → Si with the natural

homomorphism Si → Si/Ni. This is a surjective homomorphism from S to Si/Ni

whose kernel consists of all tuples (s1, . . . , sn) ∈ S where si ∈ Ni. The induced
homomorphism S →

∏
Si/Ni maps S onto each factor and has kernel N . The ho-

momorphism S/N →
∏
Si/Ni that is guaranteed by the First Isomorphism Theorem

realizes S/N = H as a subdirect subgroup of
∏
Si/Ni =

∏
Hi.

In (3) the equivalence of the two claims follows by observing that the kernel of the
projection homomorphism prI : H → prI(H) for I = {1, . . . , i− 1, i+1, . . . , n} is the
i-th coordinate kernel of H. By symmetry it suffices to show that the first coordinate
kernel of H is trivial. If N1h belongs to the first coordinate kernel of H, that is
(N1h,N2, . . . , Nn) ∈ H, then we have (h, 1, . . . , 1) ∈ S, since N1×N2×· · ·×Nn ⊆ S.
Thus h ∈ N1, completing the proof of (3).
(4) Suppose S is meet irreducible in the lattice of subgroups of Gn. Since S contains

N = N1×N2×· · ·×Nn, and is contained in
∏
Si = S1×S2×· · ·×Sn, S is also meet

irreducible in the interval I[N,
∏
Si] of the lattice of subgroups of G

n. This interval
is isomorphic to the lattice of subgroups of

∏
Hi =

∏
(Si/Ni) =

(∏
Si
)/
N , therefore

H is meet irreducible in the lattice of subgroups of
∏
Hi.

Now we will look at reduced subgroups of direct products
∏
Hi where each Hi can

be thought of as a section of G, though in most lemmas below we will not need that
assumption. The case when there are only two factors is easy:

Lemma 2.4. For any groups H1, H2, every subdirect subgroup H of H1 × H2 that
satisfies condition (2) from Definition 2.2 is (the graph of) an isomorphism H1 → H2.
In particular, every reduced subgroup of H1 × H2 is (the graph of) an isomorphism
H1 → H2.
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Proof. Let H be a subdirect subgroup of H1 × H2 that satisfies condition (2) from
Definition 2.2. Since the coordinate kernels of H are trivial and pri(H) = Hi,
Lemma 2.3 (2)–(3) shows that the projection homomorphisms pri : H → Hi,
(h1, h2) 7→ hi are isomorphisms (i = 1, 2). Thus H is the graph of the composi-
tion of the isomorphisms (pr1)

−1 : H1 → H and pr2 : H → H2.

Next we consider reduced subgroups of direct products with more that two factors.

Lemma 2.5. Let H1, . . . , Hn be nontrivial finite groups where n ≥ 3. If H is a
reduced subgroup of

∏
Hi = H1 × · · · ×Hn, then

(1) H1, . . . , Hn are subdirectly irreducible groups with isomorphic abelian minimal
normal subgroups M1, . . . ,Mn, and

(2) the unique upper cover of H is K = H
∏
Mi.

Furthermore, for the centralizers Ci = CHi
(Mi) (i = 1, 2, . . . , n) of the minimal

normal subgroups Mi we have the following:

(3) H1/C1
∼= H2/C2

∼= · · · ∼= Hn/Cn, and
(4) there exist isomorphisms ιi : H1/C1 → Hi/Ci (i = 2, . . . , n) such that

(h1, h2, . . . , hn) ∈ H ⇒ hiCi = ιi(h1C1) for all i = 2, . . . , n.

Proof. Let K denote the unique upper cover of H in the lattice of subgroups of
∏
Hi.

Clearly, K is also a subdirect subgroup of
∏
Hi; that is, pri(K) = Hi for all i. Let

M1, . . . ,Mn denote the coordinate kernels of K; that is,

Mi = {g ∈ Hi : (1, . . . , 1,
i
`

g, 1, . . . , 1) ∈ K}.

Claim 2.6. prI(K) = prI(H) for all (n−1)-element subsets I of {1, ..., n}, and each
coordinate kernelMi of K is a nontrivial normal subgroup of Hi. Hence K = H

∏
Mi.

Our assumptions on H are invariant under permuting the coordinates of H. There-
fore it suffices to prove the equality prI(K) = prI(H) for the set I = {1, . . . , n− 1}.
Let g 6= 1 be any element of Hn. Since H has trivial coordinate kernels, we have
(1, . . . , 1, g) /∈ H. Therefore the subgroup S of H1×· · ·×Hn generated by H and the
element (1, . . . , 1, g) satisfies H ⊂ S and prI(S) = prI(H). Since K is the unique up-
per cover ofH, we get thatH ⊂ K ⊆ S. Hence prI(H) ⊆ prI(K) ⊆ prI(S) = prI(H),
forcing prI(K) = prI(H),
K properly contains H, but their projections onto any n − 1 coordinates are the

same. Therefore the projection homomorphisms prI : K → prI(K) = prI(H) are not
bijective for any (n− 1)-element subset I of {1, . . . , n}. Thus the coordinate kernels
Mi (1 ≤ i ≤ n) of K are nontrivial. By Lemma 2.3, each Mi is a normal subgroup
of Hi and

∏
Mi ⊆ K. Since

∏
Mi 6⊆ H (as H has trivial coordinate kernels) and K

covers H, it follows that K = H
∏
Mi.

Claim 2.7. For each i, Mi is the unique minimal normal subgroup of Hi.
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Since our assumptions on H are invariant under permuting the coordinates of H,
it suffices to consider the case i = 1. Let N be any nontrivial normal subgroup of

H1. Clearly, both N̂ = N × {1}n−1 and M̂1 =M1 × {1}
n−1 are normal subgroups of∏

Hi. Since H has trivial coordinate kernels, N̂ , M̂1 as well as their product intersect

trivially with H. It follows, in particular, that H ⊂ HN̂ . Hence K ⊆ HN̂ , as K is

the unique cover of H. But
∏
Mi ⊆ K, therefore M̂1 ⊆ HN̂ . Thus HN̂ = H(N̂M̂1).

SinceH∩N̂ = H∩(N̂M̂1) = {1} and all groups appearing here are finite, we conclude

that |N̂ | = |N̂M̂1|. Therefore M̂1 ⊆ N̂ , and it follows that M1 ⊆ N . This proves
that M1 is contained in each nontrivial normal subgroup of H1, and hence completes
the proof of Claim 2.7.

Claim 2.8. M1
∼= · · · ∼= Mn.

It suffices to prove that M1
∼= M2. Let M̂1 = M1 × {1}

n−1 and M̂2 = {1} ×M2 ×

{1}n−2. For i = 1, 2, M̂i intersects trivially with H since H has trivial coordinate

kernels, and K = HM̂i since M̂i ⊆
∏
Mj ⊆ K and K is the unique upper cover of

H. Thus |Mi| = |M̂i| = [K : H] (i = 1, 2).
Now let us consider the subgroup

U = {(m,h) ∈M1 ×H2 : (m,h, 1, . . . , 1) ∈ H}

of H. Since pr{1,3,...n}(H) = pr{1,3,...n}(K) and M̂1 ⊆ K, therefore to every element
m ∈ M1 there exists h ∈ H2 such that (m,h) ∈ U . The element h is uniquely
determined by m, because H has trivial coordinate kernels, implying that the pro-
jection homomorphism H → pr{1,3,...n}(H) is bijective. Thus pr1(U) =M1, pr2(U) is
a subgroup N2 of H2, and U is (the graph of) an isomorphism M1 → N2. Clearly,
|N2| = |M1|. Since every element of H2 occurs as a second coordinate of an element
of H and conjugation by such an element maps U into itself, it follows that N2 is a
normal subgroup of H2. So by Claim 2.7 we have M2 ⊆ N2. We proved earlier that
|M2| = |M1| and |M1| = |N2|. Thus N2 =M2, proving that M1

∼= M2.

Claim 2.9. The normal subgroup M = H ∩
∏
Mi of H is a subdirect subgroup of∏

Mi with trivial coordinate kernels. Furthermore, prI(M) =
∏

i∈I Mi for all (n−1)-
element subsets I of {1, . . . , n}.

M has trivial coordinate kernels, because M ⊆ H and H has trivial coordinate
kernels. The second part of the claim implies that M is a subdirect subgroup of∏
Mi. Therefore it suffices to prove the second part of the claim.
The arguments in the proof of the preceding claim show that U is the graph of an

isomorphism M1 → M2 and U × {1}
n−2 ⊆ M . Hence, in particular, M2 × {1}

n−2 ⊆
prI(M) for I = {2, . . . , n}. By interchanging the roles of the second and i-th coordi-
nates in H for any 2 < i ≤ n we get that {1}i−2×Mi×{1}

n−i ⊆ prI(M). Multiplying
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these subgroups yields that
∏

i∈I Mi ⊆ prI(M) for I = {2, . . . , n}. The reverse in-
clusion is obvious, which establishes the required equality

∏
i∈I Mi = prI(M) for

I = {2, . . . , n}. Since our assumptions on H are invariant under permuting the coor-
dinates of H, it follows that a similar equality holds for every (n− 1)-element subset
I of {1, . . . , n}.

Claim 2.10. M1, . . . ,Mn are abelian.

By Claim 2.8, it suffices to show that M1 is abelian. For any `,m ∈ M1 the
elements α = (`, 1, 1, . . . , 1) and β = (m, 1, 1, . . . , 1) belong to

∏
Mi ⊆ K. Since

prI(K) = prI(H) for all (n − 1)-element subsets I, there exist elements in H that
agree with α and β in all but any one given coordinate. Since n ≥ 3, there exist
g ∈ H2 and h ∈ H3 such that (`, g, 1, . . . , 1), (m, 1, h, . . . , 1) ∈ H. The commutator of
these elements is (`−1m−1`m, 1, 1, . . . , 1) ∈ H. Since H has trivial coordinate kernels,
`−1m−1`m = 1, for any two elements `,m ∈M1. This proves that M1 is abelian.

We have now established parts (1) and (2) of Lemma 2.5.
The quotient groups in part (3) make sense, because the centralizer of a normal

subgroup is normal, and hence Ci / Hi for all i. Since the normal subgroups Mi are
abelian, we have Mi ⊆ Ci for all i.
Project H onto the first two coordinates to get a subgroup H12 = pr{1,2}(H) of

H1 ×H2. Since C1 ×C2 / H1 ×H2, the least subgroup of H1 ×H2 that contains H12

and C1 × C2 is H12(C1 × C2), and the quotient group V = H12(C1 × C2)/(C1 × C2)
can naturally be considerered as a subgroup of (H1/C1)× (H2/C2), namely

V = {(h1C1, h2C2) : (h1, h2, h3, . . . , hn) ∈ H

for some h3 ∈ H3, . . . , hn ∈ Hn}.
(2.1)

Claim 2.11. V is the graph of an isomorphism H1/C1 → H2/C2.

Let U be the subgroup ofM1×H2 defined in the proof of Claim 2.8. It was proved
there that U is in fact a subgroup of M1 ×M2, that is,

U = {(m1,m2) ∈M1 ×M2 : (m1,m2, 1, . . . , 1) ∈ H},

and U is the graph of an isomorphism M1 → M2. Let h = (h1, h2, h3, . . . , hn) and
k = (k1, k2, k3, . . . , kn) be arbitrary n-tuples from H. For any pair (m1,m2) ∈ U ,
conjugating the n-tuple (m1,m2, 1, . . . , 1) ∈ H with h and k yields that the pairs
(h1m1h

−1
1 , h2m2h

−1
2 ) and (k1m1k

−1
1 , k2m2k

−1
2 ) also belong to U . Now, if h1C1 = k1C1,

then h1m1h
−1
1 = k1m1k

−1
1 for all m1 ∈ M1. Since U is the graph of an isomorphism

M1 →M2, it follows that h2m2h
−1
2 = k2m2k

−1
2 for all m2 ∈M2. Hence h2C2 = k2C2.

Similarly, if h2C2 = k2C2 then h1C1 = k1C1. Thus V is the graph of a bijection
between (some) elements of H1/C1 and H2/C2. However, since H is a subdirect
subgroup of

∏
Hi, it is clear from the description of V in (2.1) that every element of

Hi/Ci (i = 1, 2) occurs as the i-th coordinate of some pair in V . Thus V is in fact
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the graph of a bijection H1/C1 → H2/C2. Since V is a group, this bijection is an
isomorphism, completing the proof of Claim 2.11.

Claim 2.11 shows that H1/C1
∼= H2/C2, and that the displayed implication in (4)

holds for i = 2 if we choose ι2 to be the isomorphism H1/C1 → H2/C2 defined by V .
Since our assumptions on H are invariant under permuting the coordinates of H, in
the arguments above the second coordinate can be replaced by the i-th coordinate
for any i = 3, . . . , n. This completes the proof of Lemma 2.5.

Lemma 2.12. Let H1, . . . , Hn (n ≥ 3) be nontrivial finite groups whose Sylow sub-
groups are abelian, and let H be a reduced subgroup of

∏
Hi such that |H1| ≤ · · · ≤

|Hn|.

(1) H1, . . . , Hn are subdirectly irreducible groups such that their minimal normal sub-
groups M1, . . . ,Mn are isomorphic elementary abelian p-groups for some prime
p, and their Sylow p-subgroups P1, . . . , Pn are normal; in fact,

Pi = CHi
(Mi) for all i = 1, . . . , n.

(2) There exist embeddings ϕi : Hi → Hn (i = 1, . . . , n− 1) such that the subgroup

(2.2) H∗ =
{(
ϕ1(h1), . . . , ϕn−1(hn−1), hn

)
: (h1, . . . , hn) ∈ H

}

of (Hn)
n has the following structure:

H∗ =
{(
x1c, . . . , xn−1c, ψ1(x1) · · ·ψn−1(xn−1)c

)
:

c ∈ Qn and x1 ∈ P
∗
1 , . . . , xn−1 ∈ P

∗
n−1

}(2.3)

for a complement Qn of Pn in Hn, for some normal subgroups P ∗
1 , . . . , P

∗
n−1 of

Hn in Pn and some automorphisms ψi of P
∗
i (i = 1, . . . , n − 1) such that ψi is

the restriction to P ∗
i of an automorphism χi of H

∗
i = P ∗

i Qn which acts on Qn

as the identity.

Proof. We will need the following fact about finite groups with abelian Sylow sub-
groups.

Claim 2.13. Let G be a finite group whose Sylow subgroups are abelian. If G is
subdirectly irreducible with abelian minimal normal subgroup N , then CG(N) is a
Sylow subgroup of G.

It is proved in [1] that a finite group G has abelian Sylow subgroups if and only if
it satisfies the commutator law

[M,M ∩N ] = [M,M ] ∩N

for all M,N C H where H is a subgroup of G. In particular, if G is subdirectly
irreducible with abelian minimal normal subgroup N and M = CG(N), then

{1} = [CG(N), N ] = [CG(N), CG(N) ∩N ] = [CG(N), CG(N)] ∩N.
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Hence CG(N) is abelian. N is an abelian p-group for some prime p, so — since Sylow
subgroups are abelian — N ⊆ P ⊆ CG(N) for some Sylow p-subgroup P . Let T be
a complement of P in the abelian group CG(N). Then T is a characteristic subgroup
of CG(N). Since CG(N) is normal in G, it follows that T is a normal subgroup of
G. But N is the unique minimal normal subgroup of G and T intersects N trivially.
Therefore T is trivial, which implies that CG(N) = P .

We know from part (1) of Lemma 2.5 that the groups H1, . . . , Hn are subdirectly
irreducible, and their minimal normal subgroups M1, . . . ,Mn are abelian and iso-
morphic to each other. It follows in particular, that all Mi are elementary abelian
p-groups for the same prime p. Thus Claim 2.13 implies that CHi

(Mi) = Pi / Hi for
all i (i = 1, . . . , n). This establishes the claims in part (1) of Lemma 2.12.

Since each Pi is a normal subgroup ofHi, the group P
† =

∏
Pi is a normal subgroup

of
∏
Hi. Therefore the Sylow p-subgroup of H is P = H ∩ P †, which is normal in

H. This implies that P has a complement in H. We will select a complement Q, and
keep it fixed for the rest of the proof of Lemma 2.12. For 1 ≤ i ≤ n we let Qi denote
the image of Q under the projection homomorphism pri onto the i-th coordinate.
Thus Qi is a subgroup of Hi.

Claim 2.14. For all i, Qi is a complement of Pi in Hi, and there exist isomorphisms
κi : Qi → Qn (i = 1, . . . , n− 1) such that

Q =
{(
κ−1

1 (c), . . . , κ
−1
n−1(c), c

)
: c ∈ Qn

}
.

If we project H = QP onto the i-th coordinate we see that Hi = QiPi. Since the
order of Q is relatively prime to p, its homomorphic image Qi has the same property.
This implies that Qi is a complement of Pi in Hi. Hence Qi

∼= Hi/Pi. With the
notation of Lemma 2.5 we have Ci = Pi for all i, so by part (4) of that lemma there
exist isomorphisms ιi : H1/P1 → Hi/Pi (i = 2, . . . , n) such that

(2.4) (h1, h2, . . . , hn) ∈ H ⇒ hiPi = ιi(h1P1) for all i = 2, . . . , n.

Putting ι1 = id we now define the isomorphisms κj : Qj → Qn (j = 1, . . . , n− 1) by
the following compositions:

κj : Qj → Hj/Pj
ι−1

j

−−→ H1/P1
ιn−→ Hn/Pn → Qn.

It is clear now from (2.4) that if (q1, q2, . . . , qn) ∈ Q, then κj(qj) = qn for all j =
1, . . . , n − 1. Thus, for every c ∈ Qn the only n-tuple in Q with last coordinate c
is
(
κ−1

1 (c), . . . , κ
−1
n−1(c), c

)
. Since every c ∈ Qn occurs as the last coordinate of an

n-tuple from Q, the displayed equality in Claim 2.14 follows.

Now we will look at some subgroups of
∏
Hi that contain H = QP . Since Q is

a complement of the Sylow p-subgroup P in H, its order is relatively prime to p.
Thus Q intersects trivially with P † as well. Let H† = QP †. Clearly, P † is a normal



CLONES OF FINITE GROUPS 9

subgroup of H†. Therefore Q acts on P † by conjugation. There is a natural way
to consider P † as a Q-module (or equivalently, a module over the group ring Zpf [Q]
for any power pf of p exceeding the exponent of P †) as follows: module addition is
the abelian group operation of P †, and for any u ∈ Q, module multiplication by u is
conjugation by u.

Claim 2.15. Every group H◦ with Q ⊆ H◦ ⊆ H† decomposes as H◦ = QP ◦ where
P ◦ = H◦ ∩ P † is a normal Sylow p-subgroup in H◦, and hence P ◦ is a Q-submodule
of P †. Moreover, the mapping H◦ → P ◦ is a lattice isomorphism between the interval
I[Q,H†] in the subgroup lattice of

∏
Hi and the lattice of Q-submodules of P †.

To prove the first part of the claim, let H◦ be a subgroup of H† such that Q ⊆ H◦.
Since P † is a normal Sylow p-subgroup of H†, it follows that P ◦ = H◦ ∩ P † is a
normal Sylow p-subgroup of H◦. Thus P ◦ is closed under conjugation by elements
of Q, implying that it is a Q-submodule of P †. Now we show that H◦ = QP ◦. Since
QP ◦ ⊆ H◦ and

Q ∼= H†/P † = H◦P †/P † ∼= H◦/(H◦ ∩ P †) = H◦/P ◦ ⊇ QP ◦/P ◦ ∼= Q,

the inclusion ⊇ in the displayed formula cannot be proper. This completes the proof
of the equality H◦ = QP ◦ and the first statement of the claim.
The facts established in the preceding paragraph show thatH◦ → P ◦ is an injective

and monotone mapping of the interval I[Q,H†] of the subgroup lattice of
∏
Hi into

the lattice of Q-submodules of P †. It remains to show that this mapping is surjective.
Let R be a Q-submodule of P †. Then R is a subgroup of P † that is closed under
conjugation by elements of Q. Since H† = QP † and P † is abelian, it follows that R
is closed under conjugation by all elements of H†. Thus R is a normal p-subgroup
of H†. Hence the group QR belongs to the interval I[Q,H †], and has normal Sylow
p-subgroup R. The proof of Claim 2.15 is complete.

The interval I[Q,H†] contains H = QP as well as its unique upper cover
K = H

∏
Mi = Q(P

∏
Mi). The isomorphism described in Claim 2.15 ensures

that the image P of H has a unique upper cover in the lattice of Q-submodules of
P †. Therefore P †/P is a subdirectly irreducible Q-module of p-power exponent.
The next claim describes the submodules of such modules.

Claim 2.16. Let G be a finite group whose order is not divisible by the prime p, and
let W be a finite subdirectly irreducible G-module whose additive exponent is pe. Then
every submodule of W has the form pjW for some 0 ≤ j ≤ e. Hence the submodule
lattice of W is a chain of length e.

Let S be the unique minimal submodule of W , and let A denote the submodule
of W that consist of all elements w ∈ W such that pw = 0. Both A and pe−1W
are nontrivial submodules of W because the exponent of W is pe. Thus we have
S ⊆ pe−1W ⊆ A. It follows that A is a subdirectly irreducible G-module. The
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exponent of A is p, therefore A is a module over the group ring Zp[G]. By Maschke’s
Theorem Zp[G] is semisimple, and hence every subdirectly irreducible Zp[G]-module
is simple. Thus A is simple, which implies that S = pe−1W = A.
Next we show that the submodules of W form a chain. Suppose not, and consider

a counterexample W of smallest size. Then the unique minimal submodule A of W
has more than one upper cover, since otherwise W/A would be a smaller subdirectly
irreducibleG-module whose submodule lattice is not a chain. Let V, V ′ be two distinct
upper covers of A. Then V, V ′ 6⊆ A implies that the submodules pV, pV ′ of W are
nontrivial. We have pV ⊆ V and pV 6= V , because pV = V would imply peV = V ,
which is impossible, because peV is trivial. Thus pV = A, and similarly pV ′ = A.
Let v ∈ V \ A be arbitrary. Then pv ∈ A but pv 6= 0. Since pV ′ = A, there exists
v′ ∈ V ′ such that pv′ = pv. Thus p(v − v′) = 0, implying that v − v′ ∈ A. Hence
v = v′ + (v − v′) ∈ V ∩ V ′ = A, which contradicts the choice of v. This proves that
the submodules of W form a chain.
The submodules Wj = pjW (j = 0, . . . , e) of W form a chain W0 ⊃ W1 ⊃ · · · ⊃

We−1 ⊃ We where W0 = W , We is the trivial submodule of W , and the inclusions
are proper, because the exponent of W is pe. To complete the proof it suffices to
show that the quotient module Wj−1/Wj is simple for all j = 1, . . . , n. We know
that the submodule lattice of Wj−1/Wj is a chain, because it is isomorphic to the
interval I[Wj,Wj−1] in the submodule lattice ofW . ThereforeWj−1/Wj is subdirectly
irreducible. In addition, the exponent ofWj−1/Wj is p. Therefore the same argument
as we used for A implies that Wj−1/Wj is simple. This completes the proof of
Claim 2.16

Claim 2.17. Each Pi, considered as a Q-module where module multiplication by q =
(q1, . . . , qn) is conjugation by qi, has a Q-module embedding in P

†/P . In particular,
Pn is isomorphic as a Q-module to P †/P .

Let P̂i denote the subgroup {1}
i−1 × Pi × {1}

n−i of P †. Then P̂i is a normal
subgroup of H†, so it is a Q-submodule. The Q-module structure of Pi was defined

so that the natural mapping Pi → P̂i is a Q-module isomorphism. For each i the

Q-submodule P̂i of P
† intersects trivially with P , because the coordinate kernels of P

are trivial. Therefore the natural isomorphism Pi → P̂i followed by the isomorphism

P̂i → P̂iP/P and the identical embedding P̂iP/P → P †/P is a Q-module embedding
of Pi in P

†/P .
Now we will use our assumption |H1| ≤ · · · ≤ |Hn|. By Claim 2.14 the complements

Qi of the Sylow p-subgroups Pi in Hi are isomorphic to each other, therefore |Q1| =
· · · = |Qn|. Hence |P1| ≤ · · · ≤ |Pn|. Let p

ei denote the exponent of Pi, and let
e = max ei. Then p

e is the exponent of P as well as of P †. Hence the exponent of
P †/P is at most pe. But since all Pi are embeddable in P

†/P , the exponent of P †/P
is equal to pe.
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By our discussion preceding Claim 2.16, P †/P is a subdirectly irreducible Q-
module. Hence by Claim 2.16 it has a unique submodule of exponent pei for each i,
namely pe−ei(P †/P ). Moreover, ei ≤ ej if and only if p

e−ei(P †/P ) ⊆ pe−ej(P †/P ).
Therefore the Q-module embeddings Pi → P †/P found earlier yield that for each
i, Pi is isomorphic, as a Q-module, to the submodule p

e−ei(P †/P ) of P †/P . Hence
the inequalities |P1| ≤ · · · ≤ |Pn| imply that e1 ≤ · · · ≤ en. Thus e = en and Pn is
isomorphic, as a Q-module, to pe−en(P †/P ) = P †/P .

Claim 2.18. For I = {1, . . . , n− 1} we have prI(P ) =
∏

i∈I Pi.

By the preceding claim P †/P is isomorphic to Pn. Thus |P | = |P †|/|Pn| =∏
i∈I |Pi|. However, the projection homomorphism prI : P →

∏
i∈I Pi is injective, be-

cause P has trivial coordinate kernels. Therefore it is onto, that is, prI(P ) =
∏

i∈I Pi.

Claim 2.19. For each i (i = 1, . . . , n − 1) there exists an embedding ϕi : Hi → Hn

such that ϕi restricts to Qi as the isomorphism κi : Qi → Qn from Claim 2.14.

Let i be a fixed index (1 ≤ i ≤ n − 1). By Claim 2.17 there exists a Q-module
embedding λi : Pi → Pn. This means that λi is a group embedding Pi → Pn which
commutes with the module multiplication by every element q = (q1, . . . , qn) of Q.
The definition of the Q-module structure of Pi in Claim 2.17 implies that for λi the
property of commuting with multiplication by q = (q1, . . . , qn) is equivalent to the
following condition:

λi(qixq
−1
i ) = qn

(
λi(x)

)
q−1
n for all x ∈ Pi.

The description of the elements of Q in Claim 2.14 shows that qi, qn appear as i-th
and n-th coordinates of an element of Q exactly when qn = κi(qi). Thus λi is a group
embedding Pi → Pn such that

λi(uxu
−1) =

(
κi(u)

)(
λi(x)

)(
κi(u)

)−1
for all x ∈ Pi, u ∈ Qi.

This allows us to extend λi to a group embedding ϕi of Hi = QiPi = PiQi into
Hn = QnPn = PnQn as follows: for any x ∈ Pi and u ∈ Qi let

ϕi(xu) =
(
λi(x)

)(
κi(u)

)
.

To check that ϕi is indeed a group embedding, observe first that ϕi is well-defined
and one-to-one, since Qi intersects trivially with Pi, Qn intersects trivially with Pn,
and λi, κi are one-to-one. Now let xu, yv (x, y ∈ Pi, u, v ∈ Qi) be arbitrary elements
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of Hi. Then
(
ϕi(xu)

)(
ϕi(yv)

)
=
(
λi(x)

)(
κi(u)

)(
λi(y)

)(
κi(v)

)

=
(
λi(x)

)(
(κi(u))(λi(y))(κi(u))

−1
)(
κi(u)

)(
κi(v)

)

=
(
λi(x)

)(
λi(uyu

−1)
)(
κi(u)

)(
κi(v)

)

=
(
λi(x(uyu

−1))
)(
κi(uv)

)

= ϕi
(
x(uyu−1)uv

)

= ϕi
(
(xu)(yv)

)
.

Thus ϕi is a group embedding. The definition of ϕi shows that ϕi restricts to Qi as
κi and to Pi as λi. This concludes the proof of Claim 2.19.

Now we complete the proof of part (2) of Lemma 2.12. To construct the subgroup
H∗ of Hn

n as described in the lemma, we use the embeddings ϕ1, . . . , ϕn−1 from
Claim 2.19. Namely, we let H∗ be the image of H under the embedding

ϕ = ϕ1 × · · · × ϕn−1 × id : H1 × · · · ×Hn−1 ×Hn → Hn
n .

Since ϕi restricts to Qi as κi, the description of Q in Claim 2.14 shows that the image
of the subgroup Q of H under ϕ will be the diagonal subgroup

(2.5) Q∗ = {(c, . . . , c, c) : c ∈ Qn}

of H∗.
Let P ∗ denote the image of P under ϕ, and for each i (i = 1, . . . , n − 1) let P ∗

i

denote the image of Pi under ϕi. As ϕi agrees with λi on Pi and λi is a Q-module
embedding, it follows that P ∗

i is a subgroup of Pn that is closed under conjugation by
elements of Qn. P

∗
i is also closed under conjugation by elements of Pn, because Pn

is abelian. Thus P ∗
i is a normal subgroup of Hn = QnPn. Since P is a normal Sylow

p-subgroup of H with complement Q, therefore P ∗ is a normal Sylow p-subgroup
of H∗ with complement Q∗. Since P is a subdirect subgroup of

∏
Pi with trivial

coordinate kernels and ϕ acts coordinatewise, the image P ∗ is a subdirect subgroup of∏
P ∗
i (⊆ P n

n ) with trivial coordinate kernels. Moreover, the property of P established
in Claim 2.18 will also carry over to P ∗, that is, we have

(2.6) prI(P
∗) =

∏

i∈I

P ∗
i for I = {1, . . . , n− 1}.

For each i (i = 1, . . . , n − 1) let T̂i consist of all elements of P
∗ of the form

(1, . . . , 1, xi, 1, . . . , 1, xn) where xi is in the i-th position. Since P
∗ is a normal sub-

group of H∗, so is T̂i. To focus on the nontrivial coordinates only, let

Ti = {(xi, xn) ∈ P
∗
i × Pn : (1, . . . , 1, xi, 1, . . . , 1, xn) ∈ T̂i}.
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Clearly, Ti is a subgroup of P
∗
i × Pn. The displayed equation (2.6) above implies

that to every xi ∈ P ∗
i there exists xn ∈ Pn such that (xi, xn) ∈ Ti. Since P

∗

has trivial coordinate kernels, this xn is uniquely determined by xi, and xi is also
uniquely determined by its matching xn. Thus Ti is (the graph of) an injective group
homomorphism ψi : P

∗
i → Pn, and

(2.7) T̂i = {(1, . . . , 1, xi, 1, . . . , 1, ψi(xi)) : xi ∈ P
∗
i }.

Now we make use of the fact that T̂i is closed under conjugation by elements of Q
∗.

If (xi, xn) ∈ Ti and c ∈ Qn, then conjugating the n-tuple (1, . . . , 1, xi, 1, . . . , 1, xn) ∈ T̂i
by (c, . . . , c) ∈ Q∗ yields that (cxic

−1, cxnc
−1) ∈ Ti. This means that ψi satisfies the

following condition:

(2.8) ψi(cxic
−1) = cψi(xi)c

−1 for all c ∈ Qn, xi ∈ P
∗
i .

Consequently, ψi : P
∗
i → Pn is not only an injective group homomorphism, it is also

an injective Q-module homomorphism. Since the Q-submodules of Pn form a chain,
no two distinct submodules of Pn are of the same order. Therefore the image of P

∗
i

under ψi must be P
∗
i , so ψi is an automorphism of P

∗
i .

To establish that ψi is the restriction of an appropriate automorphism χi of H
∗
i ,

as claimed in Lemma 2.12, observe first that H∗
i = P ∗

i Qn is a subgroup of Hn,
because P ∗

i / Hn. Since every element of H
∗
i can be written uniquely as a product

xc with x ∈ P ∗
i and c ∈ Qn, we get a well-defined mapping χi : H

∗
i → H∗

i by setting
χi(xc) = ψi(x)c for all x ∈ P

∗
i and c ∈ Qn. It follows that χi is injective because ψi is

such. Clearly χi restricts to P
∗
i as ψi, and to Qn as the identity. It remains to check

that χi is a homomorphism. For any x, y ∈ P
∗
i and c, d ∈ Qn we have cyc

−1 ∈ P ∗
i , as

P ∗
i / Hn. Therefore, using the definition of χi and condition (2.8), we get that

χi(xc)χi(yd) = ψi(x)cψi(y)d

= ψi(x)
(
cψi(y)c

−1
)
cd

= ψi(x)ψi(cyc
−1)cd

= ψi
(
x(cyc−1)

)
cd

= χi
(
x(cyc−1)cd

)

= χi(xcyd).

Next we prove that P ∗ is the product of its subgroups T̂i (i = 1, . . . , n− 1). Since

every element of P ∗
i occurs as the i-th coordinate of an n-tuple in T̂i, it follows

that prI(T̂1 · · · T̂n−1) =
∏

i∈I P
∗
i holds for I = {1, . . . , n − 1}. Thus |T̂1 · · · T̂n−1| ≥∏

i∈I |P
∗
i |. The analogous equation (2.6) for P

∗ combined with the fact that P ∗ has

trivial coordinate kernels yields that |P ∗| =
∏

i∈I |P
∗
i |. Thus P

∗ = T̂1 · · · T̂n−1, as
claimed.
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Finally, since Q∗ is a complement of P ∗ in H∗, we get that H∗ = P ∗Q∗ =

T̂1 · · · T̂n−1Q
∗. Using the descriptions (2.5) and (2.7) for Q∗ and T ∗

i , we get the
equality (2.3) for H∗. This completes the proof of Lemma 2.12.

It is easy to see that if the Sylow subgroups of G are abelian, then the Sylow
subgroups of all sections of G are also abelian. Thus Lemma 2.12 suggests that if the
Sylow subgroups of G are abelian, then a reduced subgroup H of a direct product of
sectionsHi of G can be constructed from two kinds of ‘building blocks’: isomorphisms
between sections of G and some subgroups of cubes of sections H0 of G which have
the following form:

(2.9) {(x1c, x2c, x1x2c) : x1, x2 ∈ P0, c ∈ Q0}

where P0 is a nontrivial normal Sylow subgroup of H0 and Q0 is a complement of
P0 in H0. It is straightforward to check that since the Sylow subgroup P0 of H0 is
abelian, (2.9) is indeed a subgroup of H3

0 .
For an isomorphism σ : H1 → H2 where Hi = Si/Ni (i = 1, 2) are sections of G

we will denote by Γ[σ] the graph of σ (as a subgroup of H1 ×H2), and by ΓN1,N2
[σ]

its inverse image under the natural homomorphism S1 × S2 → (S1/N1)× (S2/N2) =
H1 ×H2. Hence

ΓN1,N2
[σ] = {(s1, s2) ∈ S1 × S2 : N2s2 = σ(N1s1)}.

Lemma 2.20. Every subgroup of G2 has the form ΓN1,N2
[σ] for an isomorphism

σ : H1 → H2 between some sections Hi = Si/Ni (i = 1, 2) of G.

Proof. Let S be a subgroup of G2. For i = 1, 2 let Si = pri(S), and let Ni be the
i-th coordinate kernel of S. By Lemma 2.3, N = N1 × N2 is a normal subgroup of
S, and H = S/N is a subdirect subgroup of the group H1 ×H2 where Hi = Si/Ni.
Moreover, H satisfies condition (2) from Definition 2.2. Thus Lemma 2.4 shows that
H = Γ[σ] for some isomorphism σ : H1 → H2. Hence S = ΓN1,N2

[σ], as claimed.

For a section H0 = S0/N0 of G the subgroup of H
3
0 in (2.9) will be denoted by

Υ[P0, Q0], and its inverse image under the natural homomorphism S3
0 → (S0/N0)

3 =
H3

0 by ΥN0
[P0, Q0]. Thus

ΥN0
[P0, Q0] = {(s1d, s2d, s1s2d) : N0s1, N0s2 ∈ P0, N0d ∈ Q0}.

Theorem 2.21. Let G be a finite group whose Sylow subgroups are abelian. A fini-
tary operation f on the underlying set of G is a term operation of G if and only if
the following subgroups of G2 and G3 are closed under f :

(i) all subgroups of G2, and
(ii) all subgroups ΥN0

[P0, Q0] of G
3 where P0 is a normal Sylow subgroup of a section

H0 = S0/N0 of G and Q0 is a complement of P0 in H0.

(Note that f preserves all subgroups of G2 if and only if it preserves some subgroups
of G3, namely the subgroups of G×G× {1}.)
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Proof. An operation on the underlying set of G is a term operation of G if and only
if all subgroups of finite powers of G are closed under f . Therefore the statement
of the theorem is equivalent to the following: all subgroups of finite powers of G are
closed under f if the subgroups listed in (i) and (ii) are closed under f . To prove this
we will make use of the following fact.

Claim 2.22. Let g be an operation on a set A, and let Ti (i ∈ I), T, T
′ be subsets of

finite powers of A.

• If all Ti (⊆ Ak) (i ∈ I) are closed under g, then so is
⋂

i∈I Ti.
• If T and T ′ are closed under g, then so is T × T ′.
• If T is closed under g, then so is every set that arises from T by performing a
fixed permutation on the coordinates of T .

• If T (⊆ Ak) is closed under g, then so is prI(T ) for all nonempty I ⊆ {1, . . . , k}.

By definition, T is closed under g if and only if T is (the underlying set of) a
subalgebra of some finite power of the algebra (A; g). Thus the statement of the
claim can be rephrased as follows: the collection of all subalgebras of finite powers
of (A; g) is closed under intersection, direct product, permuting coordinates, and
projecting onto some coordinates. Hence the proof of the claim is straightforward.

Now let f be an operation on G, and let us assume that the subgroups of G2 and
G3 listed in (i)–(ii) are closed under f . We want to argue that all subgroups of finite
powers of G must then be closed under f .
If S is a subgroup of G, then S2 is a subgroup of G2 such that S = pr1(S

2). Since
by assumption S2 is closed under f , it follows from Claim 2.22 that S is also closed
under f . Hence f can be restricted to any subgroup S of G. The restriction of f to
S will be denoted by fS.
Let S/N be a section of G, and consider the subgroup ΓN,N [idS/N ] of G

2 where
idS/N is the identity isomorphism S/N → S/N . Clearly, ΓN,N [idS/N ] is the congruence
relation of S with kernel N . Only elements of S are involved in this relation, therefore
the assumption that the subgroup ΓN,N [idS/N ] of G

2 is closed under f , means that
the congruence of S with kernel N is closed under fS (an operation on S). Thus fS

(and hence f) has a natural action on the quotient S/N , which we will denote by
fS/N .
Now consider an arbitrary subgroup S of some finite power Gn of G. Our goal

is to show that S is closed under f . The case n = 1 was settled above, while the
case n = 2 is part of our assumptions. Therefore we will assume from now on that
n ≥ 3 and that all subgroups of Gn−1 are closed under f . We may also assume that
S is meet irreducible in the lattice of subgroups of Gn. The reason for this is that
every subgroup of Gn is an intersection of meet irreducible subgroups, and if some
subgroups are closed under f , then so is their intersection (cf. Claim 2.22).
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For each i (1 ≤ i ≤ n) let Si = pri(S), let Ni be the i-th coordinate kernel of S,
and let Hi = Si/Ni. Clearly, S is a subdirect subgroup of

∏
Si. If |Hi| = 1 for some

i, say i = 1, then N1 = S1 and S1 × {1}
n−1 is a subgroup of S. This implies that

S = S1×pr2,...,n(S). Here S1 is a subgroup of G and pr2,...,n(S) is a subgroup of G
n−1.

Since by our assumptions S1 as well as pr2,...,n(S) are closed under f , it follows from
Claim 2.22 that their direct product is closed under f . Hence S is closed under f in
this case. Therefore from now on we will assume that |Hi| > 1 for all i. Lemma 2.3
shows that the group H = S/

∏
Ni is a subdirect subgroup of

∏
Hi, H has trivial

coordinate kernels, and H is meet irreducible in the lattice of subgroups of
∏
Hi.

Thus H is a reduced subgroup of
∏
Hi.

Claim 2.23. S is closed under the operation f if and only if H is closed under the
operation fH1 × · · · × fHn which acts in the i-th coordinate as fHi = fSi/Ni for all i
(1 ≤ i ≤ n).

By definition, ‘S is closed under f ’ means that S is closed under the coordinatewise
application of f to elements of S. Since the i-th coordinates of elements of S all belong
to Si, when we apply f coordinatewise to elements of S, in the i-th coordinate we use
only its restriction fSi to Si. In other words, S is closed under the coordinatewise
action of f if and only if S is closed under the operation fS1 × · · · × fSn . By
construction, H arises from S by factoring out its normal subgroup N1 × · · · × Nn,
and S is the full inverse image of H under the product homomorphism

S1 × · · · × Sn → (S1/N1)× · · · × (Sn/Nn) = H1 × · · · ×Hn.

Therefore it is easy to see that S is closed under the operation f S1 × · · · × fSn if and
only if H is closed under the operation fS1/N1×· · ·×fSn/Nn . This proves Claim 2.23.

In particular, we can apply Claim 2.23 to the subgroups ΓN1,N2
[σ] and ΥN0

[P0, Q0]
in place of S. (These subgroups have coordinate kernels N1, N2 and N0, N0, N0, re-
spectively.) Thus the assumption that these subgroups are closed under f translates,
in the spirit of Claim 2.23, into the following statements.

Claim 2.24. (1) If σ : H1 → H2 is an isomorphism between sections of G, then the
graph Γ[σ] of σ is closed under the operation fH1 × fH2.
(2) If H0 = S0/N0 is a section of G, P0 is a normal Sylow subgroup of H0 and Q0

is a complement of P0 in H0, then the subgroup Υ[P0, Q0] of H
3
0 is closed under the

operation fH0.

In view of Claim 2.23 it remains to check that H is closed under the operation
fH1 × · · · × fHn . We established earlier that H is a reduced subgroup of

∏
Hi. Here

all Hi are sections of G, therefore the property of G that its Sylow subgroups are
abelian, is inherited by all Hi. Thus Lemma 2.12 applies to H. We will use all the
notation introduced in Lemma 2.12. The assumption |H1| ≤ · · · ≤ |Hn| does not
restrict generality, because it can be achieved by permuting the coordinates of the
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original subgroup S, and according to Claim 2.22, permuting coordinates does not
affect closure under f .
Our goal is to show that H is closed under the operation fH1 × · · · × fHn . First

we will look at the subgroup H∗ of Hn
n .

Claim 2.25. H∗ is closed under fHn.

Claim 2.24 provides a collection of subgroups of H2
n and H

3
n that are closed under

fHn ; among them are

• the subgroups Γ[χi] (i = 1, . . . , n − 1) of H
2
n where χi is the automorphism of

the subgroup H∗
i of Hn from Lemma 2.12, and

• the subgroup Υ[Pn, Qn] of H
3
n where Pn is the normal Sylow subgroup of Hn

and Qn is a complement of Pn in Hn, as in Lemma 2.12.

We will prove Claim 2.25 by showing that H∗ can be constructed from these sub-
groups, using the constructions described in Claim 2.22.
We start with defining a sequence Υk of subgroups of H

k
n (k ≥ 2) as follows:

Υk = {(x1c, x2c, . . . , xkc, x1x2 · · · xkc) : c ∈ Qn, x1, x2, . . . , xk ∈ Pn}.

Clearly, Υ2 = Υ[Pn, Qn]. The following equality shows how to construct Υk+1 from
Υk and Υ2:

Υk+1 = {(y1, . . . , yk, yk+2, yk+3) ∈ H
k+2
n : there exists yk+1 ∈ Hn such that(2.10)

(y1, . . . , yk, yk+1) ∈ Υk and (yk+1, yk+2, yk+3) ∈ Υ2}.

To prove (2.10) let Υ′
k+1 denote the set on the right hand side, and consider an

arbitrary (k + 2)-tuple (y1, . . . , yk, yk+2, yk+3) from Hk+2
n . By definition, we have

(y1, y2, . . . , yk, yk+2, yk+3) ∈ Υ
′
k+1 if and only if there exists an element yk+1 ∈ Hn

such that (y1, y2, . . . , yk, yk+1) ∈ Υk and (yk+1, yk+2, yk+3) ∈ Υ2. These conditions
mean that

(y1, y2, . . . , yk, yk+1) = (x1c, x2c, . . . , xkc, x1x2 · · · xkc)

for some c ∈ Qn and x1, x2, . . . , xk ∈ Pn, and

(yk+1, yk+2, yk+3) = (x
′
1c

′, xk+1c
′, x′1xk+1c

′)

for some c′ ∈ Qn and x
′
1, xk+1 ∈ Pn. In particular, x1x2 · · · xkc = yk+1 = x′1c

′. But in
Hn = PnQn every element can be written uniquely as a product of an element from
Pn and an element from Qn. Therefore the displayed equalities hold exactly when
x1x2 · · · xk = x′1 and c = c′. In that case yk+3 = x′1xk+1c

′ = x1x2 · · · xkxk+1c and

(y1, y2, . . . , yk, yk+2, yk+3) = (x1c, x2c, . . . , xkc, xk+1c, x1x2 · · · xkxk+1c).

This proves the equality in (2.10).
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Now, using the description of H∗ in (2.3) we can express H∗ with Υn and Γ[χi]
(i = 1, . . . , n− 1) as follows:

H∗ = {(y1, . . . , yn−1, zn) ∈ H
n
n : there exist z1, . . . , zn−1 ∈ Hn such that(2.11)

(yi, zi) ∈ Γ[χi] for i = 1, . . . , n− 1 and (z1, . . . , zn) ∈ Υn−1}.

To prove this equality let H ′ denote the right hand side of (2.11), and consider an
arbitrary n-tuple (y1, . . . , yn−1, zn) from Hn

n . By definition, (y1, . . . , yn−1, zn) belongs
to H ′ if and only if for some elements z1, . . . , zn−1 ∈ Hn we have (yi, zi) ∈ Γ[χi] for
i = 1, . . . , n− 1 and (z1, . . . , zn) ∈ Υn−1. These conditions mean that zi = χi(yi) for
all i = 1, . . . , n− 1 and

(z1, z2, . . . , zn−1, zn) = (x
′
1c, x

′
2c, . . . , x

′
n−1c, x

′
1x

′
2 · · · x

′
n−1c)

for some c ∈ Qn and x
′
1, x

′
2, . . . , x

′
n−1 ∈ Pn. In particular, the last displayed equality

implies that for all i = 1, . . . , n − 1 we have zi = x′ic, while the equality zi = χi(yi)
implies that zi belongs to the range H

∗
i = P ∗

i Qn of χi. Therefore x
′
i ∈ P

∗
i . Since the

automorphism χi of H
∗
i restricts to P

∗
i as ψi and to Qn as the identity, we get that

yi = ψ−1
i (x

′
i)c for all i. So, with the notation xi = ψ−1

i (x
′
i) we get that xi ∈ P

∗
i and

x′i = ψi(xi) for all i, moreover,

(y1, . . . , yn−1, zn) = (x1c, . . . , xn−1c, ψ1(x1) · · ·ψn−1(xn−1)c).

This finishes the proof of the equality (2.11).
We can rewrite the right hand sides of (2.10) and (2.11) in a form that shows

more explicitly that these subgroups do indeed arise from Υ2 = Υ[Pn, Qn] and
Γ[χi] by the constructions described in Claim 2.22. As for (2.10), the set of all
(k + 3)-tuples (y1, . . . , yk, yk+1, yk+2, yk+3) ∈ Hk+3

n such that (y1, . . . , yk, yk+1) ∈ Υk

and (yk+1, yk+2, yk+3) ∈ Υ2 is the set (Υk × H2
n) ∩ (H

k
n × Υ2). The right hand side

of (2.10) consists of all (k + 2)-tuples (y1, . . . , yk, yk+2, yk+3) that arise from such
(k + 3)-tuples by omitting their coordinate yk+1. Therefore

(2.12) Υk+1 = pr1,...,k,k+2,k+3

(
(Υk ×H2

n) ∩ (H
k
n ×Υ2)

)
.

Similarly, since the set of all (2n − 1)-tuples (y1, z1, . . . , yn−1, zn−1, zn) ∈ H2n−1
n sat-

isfying (yi, zi) ∈ Γ[χi] for all i = 1, . . . , n − 1 is the set Γ[χ1] × · · · × Γ[χn−1] × Hn

while the set of all (2n − 1)-tuples (y1, . . . , yn−1, z1 . . . , zn−1, zn) ∈ H2n−1
n satisfying

(z1, . . . , zn−1, zn) ∈ Υn−1 is the set H
n−1
n ×Υn−1, it follows that

(2.13) H∗ = pr1,...,n−1,2n−1

(
(Γ[χ1]× · · · × Γ[χn−1]×Hn)

† ∩ (Hn−1
n ×Υn−1)

)

where † indicates that the coordinates (y1, z1, . . . , yn−1, zn−1, zn) of the group Γ[χ1]×
· · · × Γ[χn−1] × Hn have to be reordered in the form (y1, . . . , yn−1, z1 . . . , zn−1, zn)
before intersecting with Hn−1

n ×Υn−1.
This completes the proof of Claim 2.25.
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Now we prove that H is closed under the operation fH1×· · ·×fHn . In the equality
(2.2) that relates H to H∗ the embedding ϕi : Hi → Hn (i = 1, . . . , n− 1) maps onto
the subgroup H∗

i of Hn, since H
∗ is a subdirect subgroup of H∗

1 × · · · ×H∗
n−1 ×Hn.

Therefore we can consider each ϕi (i = 1, . . . , n − 1) as an isomorphism Hi → H∗
i .

For i = n let ϕn be the identity map of Hn. So, by (2.2) we have

H =
{(
ϕ−1

1 (h1), . . . , ϕ
−1
n (hn)

)
: (h1, . . . , hn) ∈ H

∗
}
.

In view of Claim 2.24 the graph Γ[ϕ−1
i ] of each group isomorphism ϕ−1

i : H
∗
i → Hi

is closed under the operation fH
∗

i × fHi . Hence ϕ−1
i is an isomorphism between the

algebras (H∗
i ; f

H∗

i ) and (Hi; f
Hi). By Claim 2.25 H∗ is closed under the coordinate-

wise action of the operation fHn × · · · × fHn . However, for 1 ≤ i ≤ n − 1 we have
pri(H

∗) = H∗
i , therefore when we check the closure of H under fHn × · · · × fHn ,

then in the i-th coordinate we apply fHn only to elements of the subgroup H∗
i of Hn,

that is, we in fact apply fH
∗

i instead of fHn . This shows that H∗ is closed under the
coordinatewise action of the operation fH

∗

1 × · · · × fH
∗

n−1 × fHn . Since H arises from
H∗ by applying the isomorphisms ϕ−1

i : (H
∗
i ; f

H∗

i )→ (Hi; f
Hi) coordinatewise in the

first n− 1 coordinates, it follows that H is closed under the coordinatewise action of
the operation fH1 × · · · × fHn−1 × fHn .
Applying Claim 2.23 we get that S is closed under f . This completes the proof of

Theorem 2.21.

3. Examples and Problems

Let G be a finite group and let Ak be the algebra whose underlying set is G and
whose operations are all finitary operations on the set G which preserve the subgroups
ofGk. Since operations from the clone ofG preserve all subgroups of powers, it follows
that Clo(G) ⊆ Clo(Ak) for all k. Any operation in Clo(Ak) preserves all subgroups
of Gk, hence all subgroups of Gk−1×{1}, hence preserves all subgroups of Gk−1. This
shows that

Clo(G) ⊆ · · · ⊆ Clo(A3) ⊆ Clo(A2) ⊆ Clo(A1),

while Clo(G) =
⋂

k∈N
Clo(Ak) by the fact (mentioned in the Introduction) that the

clone of a finite group consists of the operations that preserve the subgroups of finite
powers. We will say that the clone of G is determined by the subgroups of Gk if
Clo(G) = Clo(Ak). The main result of the previous section is that if G has abelian
Sylow subgroups, then the clone of G is determined by the subgroups of G3. In this
section we look at the equality Clo(G) = Clo(Ak) for other groups and other values
of k. First we present some useful facts.

Lemma 3.1. Let G be a finite group.

(1) If k ≥ 1, then Ak and G have the same subalgebras.
(2) If k ≥ 2, then Ak and G have the same congruences and the same unary term

operations.
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Let θN denote the congruence on G associated to N CG.

(3) If k ≥ 3, then [θG, θG] in Ak equals θ[G,G].
(4) If k ≥ 4, then [θM , θN ] in Ak equals θ[M,N ].

Proof. Since Ak is an expansion of G, the subalgebras of Ak are subgroups of G.
If k ≥ 1, then every subgroup of G is a subalgebra of Ak by the remarks at the
beginning of this section.
The part of item (2) concerning congruences follows from the fact that the same

subsets of G2 are subalgebras for both Ak and G if k ≥ 2, and the congruences on
either are the subalgebras of the square that are equivalence relations.
To see that Ak and G have the same unary term operations when k ≥ 2 it suffices

to show that if t(x) is a term operation of Ak, then it is of the form t(x) = xm for
some m. Assume that t(x) is a term operation of Ak. Since k ≥ 2, the operation t
preserves the subgroups of G. Hence for any g ∈ G we have t(g) ∈ 〈g〉, and therefore
t(g) = ge(g) for some integer e(g) (possibly depending on g) that is unique modulo
the order |g| of g.

Claim 3.2. If |b| divides |a|, then e(a) ≡ e(b) (mod |b|). Hence t(b) = be(a).

Since t maps the subgroup 〈(a, b)〉 of G2 into itself, there exists some f ∈ Z such
that t(a, b) = (a, b)f = (af , bf ). But we also have t(a, b) = (t(a), t(b)) = (ae(a), be(b)),
so e(a) ≡ f (mod |a|) and e(b) ≡ f (mod |b|). Since |b| divides |a|, we get e(a) ≡
f ≡ e(b) (mod |b|), and therefore t(b) = be(b) = be(a).

Choose a prime p dividing |G|, and choose an element a ∈ G of maximum p-power
order. Claim 3.2 guarantees that t(x) = xe(a) for any x of p-power order. Now
suppose that |G| is divisible by r different primes, and that a1, . . . , ar are elements of
maximum prime power order for each of those primes. Choose an integer m such that
m ≡ e(ai) (mod |ai|) for all i. Then m is unique modulo the exponent of the group,
and t(x) = xm whenever x has prime power order. In fact, we claim that t(x) = xm

for all x. To see this, choose any c ∈ G and set e = e(c). Then t(d) = de whenever |d|
divides |c|, in particular t(x) = xe if x ∈ 〈c〉. Therefore, on any Sylow p-subgroup of
〈c〉 both t(x) = xe and t(x) = xm hold, proving that e and m are congruent modulo
any prime power divisor of |c|. This means that t(c) = ce = cm, completing the proof
that t(x) = xm for any x ∈ G.
For items (3) and (4), the fact that Ak is an expansion of G for all k implies that

[θM , θN ] ≥ θ[M,N ] for all k. To prove equality we may work modulo θ[M,N ] since this
is a congruence on both Ak and G when k ≥ 2. This reduces (3) to the statement:
if G is abelian, then so is A3. This is easy to prove directly for arbitrary groups G,
but certainly follows from Theorem 2.1 for finite G.
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For item (4), the subalgebras of G4 = G2×2 and A4
k = A2×2

k generated by the
matrices [

a a
b b

]
and

[
c d
c d

]

with (a, b) ∈ θM and (c, d) ∈ θN are the same if k ≥ 4. But the value of [θM , θN ]
depends only on this subalgebra according to Theorem 4.9 of [2], so the commutator
of congruences coincides on Ak and G.

Example 3.3. In this example we show that Clo(G) $ Clo(A1) for any group G.
The discriminator operation on a set is the ternary operation defined by

d(x, y, z) :=

{
z, if x = y;
x, otherwise.

If G is any group and a, b, c ∈ G, then d(a, b, c) is either a or c, hence certainly
belongs to the subgroup generated by {a, b, c}. This shows that all subgroups of G
are closed under the discriminator. If the discriminator were a term operation of G,
then it would be a term operation of any nontrivial cyclic subgroup of G. If some
cyclic subgroup had infinitely many (or m) elements, then when written additively d
could be represented in the form d(x, y, z) = αx+ βy + γz with α, β, γ ∈ Z (or Zm).
Since d(x, x, y) = y = d(y, x, y) = d(y, x, x) we derive that α + β = 0, γ = 1, β = 0,
α + γ = 1, α = 1 and β + γ = 0 all hold. It is clearly impossible to find integers
(modulo m, m > 1) satisfying these conditions.

Example 3.4. In this example we show that there do exist some finite groups sat-
isfying Clo(G) = Clo(A2). First we show that if G is a finite group with a nor-
mal subgroup P of prime order such that G/P has smaller exponent than G, then
Clo(G) $ Clo(A2). Then we show that the converse is true when G is abelian.

Theorem 3.5. If a finite group G has a normal subgroup P of prime order such
that G/P has smaller exponent than G, then the clone of G is not determined by the
subgroups of G2.

Proof. Suppose that t(x) is an n-ary term operation ofG and that t(Gn) ⊆ P . We will
prove that if d(x, y, z) is the discriminator operation on P , then d

(
t(x), t(y), t(z)

)
is

compatible with all subgroups of G2. In the reverse direction, we will show that
if t(x) is a nonconstant unary term operation of G such that t(G) ⊆ P , then
d
(
t(x), t(y), t(z)

)
is not in the clone of G. Finally, we will explain how these two

facts establish the theorem.
Assume that t(x) is an n-ary term operation of G and that t(Gn) ⊆ P . To establish

that d
(
t(x), t(y), t(z)

)
is compatible with the subgroups of G2 we must show that if

(ai, a
′
i), (bi, b

′
i), (ci, c

′
i) ∈ G

2 for i = 1, . . . , n, then

d
(
(t(a), t(a′)), (t(b), t(b′)), (t(c), t(c′))

)
∈ 〈{(ai, a

′
i), (bi, b

′
i), (ci, c

′
i) | 1 ≤ i ≤ n}〉.
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We have
(
t(a), t(a′)

)
∈ 〈{(ai, a

′
i) | 1 ≤ i ≤ n}〉,

(
t(b), t(b′)

)
∈ 〈{(bi, b

′
i) | 1 ≤ i ≤ n}〉,

and
(
t(c), t(c′)

)
∈ 〈{(ci, c

′
i) | 1 ≤ i ≤ n}〉 since t is a group term. Next, we argue

that d
(
(t(a), t(a′)), (t(b), t(b′)), (t(c), t(c′))

)
belongs to the subgroup of G2 gener-

ated by
{(
t(a), t(a′)

)
,
(
t(b), t(b′)

)
,
(
t(c), t(c′)

)}
. Since the image of t is contained

in P , it suffices to show that the subgroups of P 2 are closed under d. Suppose
that (u, u′), (v, v′), (w,w′) ∈ P 2. If d

(
(u, u′), (v, v′), (w,w′)

)
∈ {(u, u′), (w,w′)}, then

there is nothing to prove. Otherwise d
(
(u, u′), (v, v′), (w,w′)

)
= (w, u′) (if u = v

and u′ 6= v′) or d
(
(u, u′), (v, v′), (w,w′)

)
= (u,w′) (if u 6= v and u′ = v′). Both

arguments are similar, so assume the latter. In this case u 6= v while u′ = v′, so
the subgroup generated by {(u, u′), (v, v′)} contains P × {1}. If the subgroup gen-
erated by {(u, u′), (v, v′), (w,w′)} contains more than this, then it contains all of
P 2, hence contains d

(
(u, u′), (v, v′), (w,w′)

)
= (u,w′) and we are done. Otherwise

the subgroup generated by {(u, u′), (v, v′), (w,w′)} is exactly P × {1}, in which case
u′ = v′ = w′ = 1. In this case, d

(
(u, u′), (v, v′), (w,w′)

)
= (u,w′) = (u, u′).

Now suppose that t(x) = xm is a nonconstant unary term operation, t(G) ⊆ P ,
and |P | = p. Since P is generated by the image of the term operation t, P is normal.
The exponent e of G does not divide m, since t is nonconstant, but the exponent f
of G/P does divide m since t(G) ⊆ P . Therefore e = fp, and there is an element
u ∈ G of p-power order such that um 6= 1. If d(xm, ym, zm) is a term operation of G,
then it is a term operation of the cyclic subgroup 〈u〉, which has order pk for some k.
Any ternary term of a cyclic subgroup can be represented as αx+ βy + γz for some
α, β, γ ∈ Zpk when written additively. Arguing as we did at the end of Example 3.3,
one sees that d(xm, ym, zm) is not a term operation.
To complete the proof of the theorem, assume that G has a normal subgroup P of

prime order such that G/P has smaller exponent f than the exponent of G. Then
t(x) = xf is a nonconstant unary term operation whose image is contained in P . By
the first part of the proof d(xf , yf , zf ) is compatible with the subgroups of G2, while
by the second part of the proof d(xf , yf , zf ) is not a term operation of G.

The proof of Theorem 3.5 suggests the following problem. Recall that a subgroup
P of G is verbal if it is generated by the union of the images of some term operations.

Problem 3.6. Prove or disprove: if G is a finite group with a verbal subgroup of
prime order, then the clone of G is not determined by the subgroups of G2.

Our proof of Theorem 3.5 shows that if P is generated by the image of t(x), then
d
(
t(x), t(y), t(z)

)
preserves the subgroups of G2, but the proof does not show that

this operation is not in Clo(G) except when t is unary. Problem 3.6 could be solved
by showing that d

(
t(x), t(y), t(z)

)
is not in Clo(G) in general.

If G has cyclic Sylow subgroups, then it satisfies the hypotheses of Theorem 3.5.
Therefore the clone of such a group is not determined by the subgroups of its square
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although the clone is determined by the subgroups of its cube by the result of Sec-
tion 2.
Next we prove that the converse of Theorem 3.5 holds for abelian groups.

Theorem 3.7. The following conditions on a finite abelian group G are equivalent:

(i) the clone of G is determined by the subgroups of G2;
(ii) G has no verbal subgroups of prime order;
(iii) the two largest invariant factors of G are equal.

Proof. If G is a finite abelian group, then G ∼= Zn1
× · · · × Znk+1

with n1 | · · · | nk+1,
where n1, . . . , nk+1 are the invariant factors.
To prove the implication (i)⇒(ii) assume that (ii) fails and that P is a verbal

subgroup of G of prime order p. Suppose that t(x1, . . . , xn) = m1x1 + · · · + mnxn
is a term operation whose image generates P . Then each of the term operations
t(0, . . . , 0, xi, 0, . . . , 0) = mixi also has image in P , and at least one of them is non-
constant since they sum to t(x1, . . . , xn). Therefore P is generated by the image
of a unary term operation, say s(x) = mx. The quotient G/P then has exponent
dividing m (since s(G) ⊆ P ), but the exponent of G does not divide m (since s is
nonconstant). This shows that the exponent of G/P is less than the exponent of G,
so Theorem 3.5 proves that condition (i) fails.
If (iii) fails, then nk 6= nk+1, so for any prime p that divides nk+1/nk the term

operation s(x) := (nk+1/p) · x has image P = {0}× · · · × {0}× (nk+1/p)Znk+1
, which

has size p. Therefore G has a verbal subgroup of prime order, which is excluded by
(ii). This established the implication (ii) ⇒ (iii).
Finally, to show that (iii)⇒ (i), suppose that nk = nk+1 and that G = Zn1

× · · ·×
Znk

×Znk
. Recall thatA2 is the algebra whose underlying set is G and whose defining

operations are those compatible with the subgroups of G2. These operations include
the term operations of G, so A2 generates a congruence permutable variety. A2 has
the same subalgebras as G, and A2

2 has the same subalgebras as G
2. The latter of

these properties implies that A2 and G have the same congruences. Therefore A2 has
the same kind of direct factorizations as G, which gives us that A2

∼= B1×· · ·×Bk×
Bk+1 where the equality of the congruences of G and A2 implies that the projections
onto the largest two factors Znk

×Znk
andBk×Bk+1 have the same congruences. Since

Znk
×Znk

is the square of an abelian group, the projection kernels together with the
diagonal normal subgroup generate a 0, 1-sublattice of normal subgroups isomorphic
to the 5-element modular nondistributive lattice M3. Therefore Bk × Bk+1 has a
0, 1-sublattice of congruences isomorphic toM3, so by Exercise 1 of Chapter 3 of [2]
the algebra Bk×Bk+1 is abelian, and therefore both factors Bk and Bk+1 are abelian.
For any i < k we can select a subgroup Hi ≤ Znk

with Hi
∼= Zni

. Then Zni
×Hi is a

quotient of a subgroup of G, and the corresponding quotient of a subalgebra of A2

has the form Bi×Hi for a subalgebra Hi ≤ Bk+1. Since Zni
×Hi

∼= Zni
×Zni

is the
square of an abelian group, we can repeat the above argument to prove that Bi×Hi
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is abelian. By projection we get that each Bi is abelian, and therefore the product
A2 is abelian.
It follows from the structure theorem for abelian algebras in congruence modular

varieties in [2] thatA2 has the same polynomial operations as a module. SinceA2 has
all the term operations of G (in particular, the identity element of G is a constant
operation of A2), and since A2 has the same subalgebras as G (in particular the
identity element of G is a 1-element subalgebra of A2), it follows that A2 has the
term operations of a module whose additive group is the same as G and whose unary
term operations are the same as those of G (according to Lemma 3.1 (2)). This
proves that Clo(A2) = Clo(G).

Theorem 3.7 describes all finite abelian groups G whose clone is determined by the
subgroups of G2. This result leads us to pose the following problem.

Problem 3.8. Is there a nonabelian finite group G whose clone is determined by
the subgroups of G2?

Next we turn to the equality Clo(G) = Clo(Ak) for k > 3. Natural questions
concerning this equality are

Problem 3.9. Is it true that for every finite group G there is a k such that Clo(G) =
Clo(Ak)?

and

Problem 3.10. Is it true that there is a k such that Clo(G) = Clo(Ak) for every
finite group?

In view of the results of the previous section one might ask if k = 3 works in Prob-
lem 3.10. We will see that it does not. In the next example we will show that
Problem 3.9 has a positive solution for nilpotent groups. We do not know the answer
for Problem 3.10 even for nilpotent groups, but we will show that the smallest k is
greater than 3 for the quaternion group.

Example 3.11. In this example we show that if G is a finite nonabelian nilpotent
group, then Clo(G) = Clo(Ak) for k = |G|[G:Z(G)]−1. In general, we expect that
smaller values of k will work, but we show here that k = 3 does not work for the
quaternion group. (In fact, Clo(Q) = Clo(A5) $ Clo(A4) if Q is the quaternion
group.)

Lemma 3.12. Let G be a group, and assume that C is a clone on the set G containing
Clo(G). If C 6= Clo(G), then there is an operation t ∈ C \ Clo(G) such that

(1) t(x1, x2, . . . , xi−1, 1, xi+1, xi+2, . . . , xn) = 1 for 1 ≤ i ≤ n, and
(2) t(x1, x2, . . . , xi−1, xi, xi, xi+2, . . . , xn) = 1 for 1 ≤ i ≤ n− 1.

If t ∈ C \ Clo(G) satisfies (1) and t ∈ Clo(A3), then
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(3) t(Gn) ⊆ [G,G],

while if t ∈ C \ Clo(G) satisfies (1) and t ∈ Clo(A4), then

(4) t(a1, . . . , an) = t(b1, . . . , bn) whenever ai ≡ bi (mod Z(G)) for all i.

Proof. We will use the notation t(x)[xi/s] to represent the operation obtained from
an operation t(x) by substituting the operation s for the variable xi of t. In this
notation, item (1) of the theorem is the statement t(x)[xi/1] = 1, and item (2) is
t(x)[xi+1/xi] = 1.
Assume that C 6= Clo(G), and choose an operation r0(x1, . . . , xn) of least arity for

the property that r0 ∈ C \ Clo(G). For 1 ≤ i ≤ n let

ri(x) = ri−1(x) · (ri−1(x)[xi/1])
−1.

Each ri−1(x)[xi/1] is in C and has smaller arity than r0, so ri−1(x)[xi/1] ∈ Clo(G).
Since each of ri(x) and ri−1(x) are constructible from the other, the group oper-
ations, and ri−1(x)[xi/1] (∈ Clo(G)), it follows that ri ∈ Clo(G) if and only if
ri−1 ∈ Clo(G); therefore ri /∈ Clo(G) for any i. Moreover, it is clear from the
definition that ri(x)[xj/1] = 1 whenever j ≤ i. Thus rn ∈ C \Clo(G) is an operation
for which item (1) holds.
In order to arrange that item (2) also holds, let s0(x) = rn(x). For 1 ≤ i ≤ n− 1

let si(x) = si−1(x) · (si−1(x)[xi+1/xi])
−1. As above, each si ∈ C \Clo(G), and item (1)

holds for each si. It is easy to check that si(x)[xj+1/xj] = 1 for j ≤ i, so if t := sn−1

then both (1) and (2) hold for t.
For item (3), assume that t ∈

(
C ∩ Clo(A3)

)
\ Clo(G). By Lemma 3.1 (2), t must

depend on at least two variables. From (1) we get

t(1, 1, g3, . . . , gn) = 1 = t(g1, 1, g3, . . . , gn),

so
1 = t(1, g2, g3, . . . , gn) [θG, θG] t(g1, g2, g3, . . . , gn).

By Lemma 3.1 (3) we get that t(g) ∈ [G,G] for any g ∈ Gn.
For item (4) it suffices to show that

t(a1, . . . , ai−1, ai, bi+1, . . . , bn) = t(a1, . . . , ai−1, bi, bi+1, . . . , bn)

for each i, since each of these is a special case of (4) and a string of equalities
of this type establishes that t(a1, . . . , an) = t(b1, . . . , bn). So assume that ai ≡ bi
(mod Z(G)). Then since

t(1, a2, . . . , ai−1, ai, bi+1, . . . , bn) = 1 = t(1, a2, . . . , ai−1, bi, bi+1, . . . , bn)

it follows that

t(a1, a2, . . . , ai−1, ai, bi+1, . . . , bn) [θG, θZ(G)] t(a1, a2, . . . , ai−1, bi, bi+1, . . . , bn).

But by Lemma 3.1 (4) the relation [θG, θZ(G)] = θ[G,Z(G)] = θ{1} is the equality relation,
so we are done.
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Theorem 3.13. If G is a nonabelian nilpotent group and C is a clone such that
Clo(G) $ C ⊆ Clo(A4), then C \ Clo(G) contains an operation t of arity ≤ [G :
Z(G)]− 1 satisfying conditions (1)–(4) of Lemma 3.12. Hence Clo(G) is determined
by the subgroups of Gk for k = |G|[G:Z(G)]−1.

Proof. Let c denote the nilpotence class of G. We have c > 1 since G is nonabelian.

Claim 3.14. c < [G : Z(G)]− 1.

The nilpotence class of G is c > 1, therefore the nilpotence class of G/Z(G) is
c − 1, which is ≤ log2([G : Z(G)]) − 1 since log2([G : Z(G)]) is an upper bound on
the length of the normal subgroup lattice of G and the descending central series of a
nonabelian nilpotent group cannot be a maximal chain in this lattice. (I.e., G/[G,G]
cannot have prime order.) Therefore c ≤ log2([G : Z(G)]) < [G : Z(G)]− 1.

Claim 3.15. If t ∈ C is a nonconstant operation that satisfies Lemma 3.12 (1) and
has arity exceeding c, then t /∈ Clo(G).

We must show that if t(x1, . . . , xn) ∈ Clo(G) satisfies Lemma 3.12 (1), and n > c,
then t is constant. By collecting commutators we may represent t as

t(x1, . . . , xn) =
(∏

xei

i

)(∏
[xi, xj]

fij

)
· · · (higher weight commutators) · · · .

Lemma 3.12 (1) implies that t[xi/1] = 1 for any i, so the commutator terms without
xi can be omitted from this representation. Since this can be done for every i, we
may assume that all variables appear in every commutator term in the representation.
But since the number of variables exceeds c, this forces t to be constant.

Now we prove the first statement in Theorem 3.13, which asserts the existence of
an operation t ∈ C \Clo(G) of arity ≤ [G : Z(G)]− 1 satisfying conditions (1)–(4) of
Lemma 3.12. Choose r0 ∈ C \Clo(G) of minimal arity. Perform the modifications of
Lemma 3.12 to produce an operation t ∈ C \ Clo(G) of the same arity satisfying (1)
and (2). Since t ∈ Clo(A4), (3) and (4) will be satisfied as well. We argue next that
the arity of t is ≤ [G : Z(G)]− 1.
Suppose that the arity of t is greater than [G : Z(G)] − 1. Since t /∈ Clo(G)

it is not the constant operation with value 1, so there exist elements ai ∈ G such
that t(a1, . . . , an) 6= 1. Let T be a transversal in G for Z(G) which contains the
element 1. Using Lemma 3.12 (4), replace each ai with the element bi ∈ T that
belongs to the same coset of Z(G). Then t(b1, . . . , bn) = t(a1, . . . , an) 6= 1, so in
particular we cannot have bi = 1 for any i. This means that there are at most
|T | − 1 = [G : Z(G)] − 1 distinct bi’s. Since the arity of t exceeds this number
there must exist i 6= j with bi = bj. We claim that t(x)[xj/xi] ∈ C \ Clo(G),
contradicting the minimality assumption concerning the arity of t. The operation
t(x)[xj/xi] belongs to C because it is obtained from t by identifying two variables. It
is nonconstant since the substitution xi = bi for all i 6= j into t(x)[xj/xi] yields the
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value t(b1, . . . , bn) 6= 1 although any substitution where xi = 1 for some i yields the
value 1. The operation t(x)[xj/xi] has arity one less than the arity of t, so this arity
is ≥ [G : Z(G)]−1 > c by Claim 3.14. Hence by Claim 3.15 the operation t(x)[xj/xi]
cannot belong to Clo(G). This completes the proof that C contains an operation t of
arity ≤ [G : Z(G)]− 1 satisfying conditions (1)–(4) of Lemma 3.12.
It is shown in Proposition 1.3 of [5] that the only `-ary operations on G preserving

the subgroups of G|G|` are the term operations of G. Therefore, if k = |G|[G:Z(G)]−1,
then Clo(Ak) and Clo(G) have the same ([G : Z(G)] − 1)-ary term operations. We
showed above that if C ⊆ Clo(A4), then C \Clo(G) is empty or contains an operation
of arity ≤ [G : Z(G)]−1. Since |G|[G:Z(G)]−1 > 4 when G is nonabelian and nilpotent,
it follows that Clo(Ak)\Clo(G) is empty when k = |G|

[G:Z(G)]−1. Therefore Clo(Ak) =
Clo(G) when k = |G|[G:Z(G)]−1.

Now we consider the clone of the quaternion group Q = {1,−1, i,−i, j,−j, k,−k}.

Theorem 3.16. Clo(Q) is determined by the subgroups of Q5.

Proof. From Theorem 3.13 we know that if C ⊆ Clo(A4) is a clone on Q properly
containing Clo(Q), then C \Clo(Q) contains an operation of arity [Q : Z(Q)]− 1 = 3
satisfying (1)–(4) of Lemma 3.12. This is a nonconstant ternary operation t(x, y, z)
such that

(1) t(1, y, z) = t(x, 1, z) = t(x, y, 1) = 1,
(2) t(x, x, z) = t(x, y, y) = 1,
(3) t(Q,Q,Q) ⊆ [Q,Q] = {1,−1}, and
(4) t(a1, a2, a3) = t(b1, b2, b3) if a` ≡ b` (mod Z(G)) for all `.

We will argue that if t is a nonconstant ternary operation on Q satisfying (1)–(4),
then t does not preserve the subgroups of Q5.
If t is nonconstant, it follows from (1) and (3) that there is a tuple (a1, a2, a3)

such that t(a1, a2, a3) = −1. From the properties (1)–(4) of t we may assume (after
reordering the variables of t, permuting the roles of i, j and k, and changing a1, a2

and a3 modulo Z(G)) that (a1, a2, a3) = (i, j, i) or (i, j, k).
If t(i, j, i) = −1, then for u = (i, i, i, i, 1),v = (j, j, i, i, 1) and w = (i, j, i, j, 1)

we have t(u,v,w) = (−1, 1, 1, 1, 1). But (−1, 1, 1, 1, 1) is not in the subgroup of Q5

generated by {u,v,w}, as one can verify. This shows that t does not preserve some
subgroup of Q5 if t(i, j, i) = −1.
If instead t(i, j, k) = −1, then for u = (i, 1, i, i, i),v = (j, j, j, 1, i) and w =

(k, k, 1, k, i) we have t(u,v,w) = (−1, 1, 1, 1, 1). Again (−1, 1, 1, 1, 1) is not in the
subgroup of Q5 generated by {u,v,w}. This shows that t does not preserve some
subgroup of Q5 if t(i, j, k) = −1.
Altogether we have shown that if C ⊆ Clo(A4) is a clone properly containing

Clo(Q), then C contains an operation that fails to preserve some subgroup of Q5.
Hence Clo(A5) = Clo(Q).



28 KEITH A. KEARNES AND ÁGNES SZENDREI

Theorem 3.17. Clo(Q) is not determined by the subgroups of Q3.

Proof. In fact, Clo(Q) is not determined by the subgroups of Q4. The proof for
exponent 4 is like the proof for exponent 3 but much longer and is omitted. Both
arguments show by examining all cases that the operation

t(x, y, z) =

{
−1, if [x, y] = [y, z] = [x, z] = −1;
1, otherwise

preserves all subgroups of Q3 (or Q4). It is clear that this operation is not in Clo(Q),
since it is a nonconstant operation on Q satisfying properties (1)–(4) from the proof
of Theorem 3.16. To prove that t preserves the subgroups of Q3, we must show that
if a,b, c ∈ Q3, then t(a,b, c) ∈ 〈a,b, c〉.
Since t(Q,Q,Q) ⊆ {1,−1}, the element t(a,b, c) may be assumed (after permuting

coordinates in Q3 if necessary) to be (1, 1, 1), (−1, 1, 1), (−1,−1, 1) or (−1,−1,−1).

Case 1. t(a,b, c) = (−1,−1,−1).

If a = (a1, a2, a3),b = (b1, b2, b3), c = (c1, c2, c3) and t(a,b, c) = (−1,−1,−1), then
a`, b`, c` ∈ {±i,±j,±k} for all `. In this circumstance, t(a,b, c) = (−1,−1,−1) =
a2 ∈ 〈a,b, c〉.

Case 2. t(a,b, c) = (−1,−1, 1).

In this case, [a`, b`] = [a`, c`] = [b`, c`] = −1 for ` = 1 or 2. For ` = 3 we
must have either [a3, b3] = 1, or [a3, c3] = 1, or [b3, c3] = 1. If [a3, b3] = 1, then
t(a,b, c) = (−1,−1, 1) = [a,b] ∈ 〈a,b, c〉, and the cases [a3, c3] = 1 and [b3, c3] = 1
can be handled similarly.

Case 3. t(a,b, c) = (−1, 1, 1).

Here we have [a`, b`] = [a`, c`] = [b`, c`] = −1 when ` = 1. We do not have all three
equalities when ` = 2 (or 3), so after relabeling we may assume that [a2, b2] = 1.
If now [a3, b3] = 1, then t(a,b, c) = (−1, 1, 1) = [a,b] ∈ 〈a,b, c〉 and we are done.
We may assume henceforth that [a3, b3] = −1, in which case (−1, 1,−1) = [a,b] ∈
〈a,b, c〉.
Since [a3, b3] = −1, then we must have either [a3, c3] = 1 or [b3, c3] = 1. After

relabeling again we may assume that [b3, c3] = 1. If [b2, c2] = 1 also, then (−1, 1, 1) =
[b, c] ∈ 〈a,b, c〉 and we are done. Therefore assume henceforth that [b2, c2] = −1, in
which case (−1,−1, 1) = [b, c] ∈ 〈a,b, c〉.
Finally, our assumptions that −1 = [a1, b1] = [b2, c2] = [a3, b3] imply that

b1, b2, b3 ∈ {±i,±j,±k}. Therefore b2 = (−1,−1,−1) ∈ 〈a,b, c〉. Now that
we know (−1, 1,−1), (−1,−1, 1), (−1,−1,−1) ∈ 〈a,b, c〉 we may conclude that
(−1, 1, 1) = (−1, 1,−1) · (−1,−1, 1) · (−1,−1,−1) ∈ 〈a,b, c〉.

Case 4. t(a,b, c) = (1, 1, 1).

t(a,b, c) = (1, 1, 1) ∈ 〈a,b, c〉 since (1, 1, 1) belongs to every subgroup of Q3.
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We conclude with a final problem. Although the clone of a finite group G is not
determined by the subgroups of G3 in general, it may be that the third power is
sufficient to distinguish the clone of one group from the clone of another group on
the same set.

Problem 3.18. Suppose that G and H are groups defined on the same set. Show
that Sub(G3) = Sub(H3) implies Clo(G) = Clo(H).
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