Natural Examples of Quasivarieties With EDPM

Keith A. Kearnes

A quasivariety \mathcal{K} has equationally definable principal meets, or EDPM, if there are finitely many pairs of terms $(p_i(x, y, z, u), q_i(x, y, z, u)), i < n$, such that for any $\mathbf{A} \in \mathcal{K}$ and $a, b, c, d \in \mathbf{A}$ we have

$$\theta_{\mathcal{K}}(a,b) \cdot \theta_{\mathcal{K}}(c,d) = \theta_{\mathcal{K}}(\{(p_i(a,b,c,d), q_i(a,b,c,d)) | i \in I\}).$$

Here $\theta_{\mathcal{K}}(X)$ denotes the least congruence θ containing X such that $\mathbf{A}/\theta \in \mathcal{K}$. Quasivarieties with EDPM have recently arisen in the study of finitely based quasivarieties. They are known to be **relatively congruence distributive**, which means that the lattice of congruences on \mathbf{A} of the form $\theta_{\mathcal{K}}(X)$ is a distributive lattice for any $\mathbf{A} \in \mathcal{K}$.

Few examples of quasivarieties with EDPM which did not lie in a congruence distributive variety (or at least a modular variety) were known until it was proved in [2] that any finite **order-primal** algebra generates a relatively distributive quasivariety. (An algebra **A** is order-primal if there exists a partial ordering, $\langle A, \leq \rangle$, of the universe of **A** such that the terms of **A** are precisely the operations on A which are monotone with respect to \leq .) Since an order-primal algebra **A** has no non-trivial subalgebras, the only finitely subdirectly irreducible algebra in **SP**(**A**) up to isomorphism is **A**. The class of finitely subdirectly irreducible algebras forms a universal class, so it follows from Theorem 2.3 (i) \leftrightarrow (iv) of [1] that the quasivariety generated by a finite order-primal algebra has EDPM. The result in [2], that finite order-primal algebras generate relatively distributive quasivarieties, uses a fairly long argument involving generalized duality theory. The same result was later proved in [3] using tame congruence theory. We now give a short, direct proof that a certain class of finite algebras (including all the order-primal algebras) generate quasivarieties with EDPM.

Theorem If **A** is a finite algebra and $\langle A, \leq \rangle$ is a partial order such that every 4-ary operation on A which is monotone with respect to \leq is a term of **A**, then $\mathcal{K} = \mathbf{SP}(\mathbf{A})$ is a quasivariety with EDPM. Hence, \mathcal{K} is a relatively distributive quasivariety.

Proof: If **A** satisfies the hypotheses of the Theorem, then **A** is subdirectly irreducible and has no non-trivial subalgebras. It is easy to prove (and this result is Theorem 2.3 (i) \leftrightarrow (vii) of [1]) that the pairs $(p_i, q_i), i < n$, are terms witnessing EDPM for \mathcal{K} iff

$$\mathbf{A} \models \forall x, y, z, u(\bigwedge_{i < n} (p_i(x, y, z, u)) = q_i(x, y, z, u)) \Leftrightarrow x = y \text{ or } z = u).$$

If we let $I = \{(a, b, c, d) \in A^4 | a \neq b \text{ and } c \neq d\}$ we may rewrite this as

$$\mathbf{A} \models \forall \bar{x} (\bigwedge_{i < n} (p_i(\bar{x}) = q_i(\bar{x})) \Leftrightarrow \bar{x} \notin I).$$

We will construct such pairs (p_i, q_i) .

We may assume that **A** is non-trivial. If no two elements of **A** are \leq -comparable, then every binary operation on A is a term of **A**. A classical result of Sierpinski implies that every finitary operation on A is a term of **A**. We can change the ordering on A so that two elements are comparable and still retain the hypotheses of this theorem. Hence we may assume that $u \neq v$ are elements of Asuch that $u \leq v$. Recall the definition of I. For each $i \in I$ we define functions $p_i, q_i : A^4 \to A$ by:

$$p_i(\bar{x}) = \begin{cases} u & \text{if } \bar{x} \le i \\ v & \text{otherwise} \end{cases} \text{ and } q_i(\bar{x}) = \begin{cases} p_i(\bar{x}) & \text{if } \bar{x} \ne i \\ v & \text{if } \bar{x} = i \end{cases}$$

The order on A^4 in this definition is the product order. p_i and q_i are monotone, therefore equal to terms, and $p_i(\bar{x}) = q_i(\bar{x})$ iff $\bar{x} \neq i$. Hence,

$$\mathbf{A} \models \forall \bar{x} (\bigwedge_{i \in I} (p_i(\bar{x}) = q_i(\bar{x})) \Leftrightarrow \bar{x} \notin I).$$

Since |I| is finite, we have shown that \mathcal{K} has EDPM. By Theorem 2.3 of [1], the fact that \mathcal{K} is relatively congruence distributive follows from the fact that it has EDPM. \Box

Corollary Every finite order-primal algebra generates a quasivariety with EDPM. \Box

It is known that not every order-primal algebra lies inside a modular variety. The order primal algebras that lie inside a modular variety are characterized in [3].

References

- [1] J. Czelakowski and W. Dziobiak, Congruence distributive quasivarieties whose finitely subdirectly irreducible members form a universal class, Algebra Universalis 27 (1990), 128–149.
- [2] B. Davey, R. W. Quackenbush, and D. Schweigert, *Monotone clones and the varieties they determine*, (preprint).
- [3] R. McKenzie, Monotone clones, residual smallness and congruence distributivity, Bull. Austral. Math. Soc. 41 (1990), 283–300.

1980 Mathematics subject classification: 08B10, 08C15.

University of Hawaii, Honolulu HI 96822