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Abstract

We prove that any finite subdirectly irreducible algebra in a congruence modular
variety with trivial Frattini congruence is critical. We also show that if A and B are
critical algebras which generate the same congruence modular variety, then the variety
generated by the proper sections of A equals the variety generated by the proper
sections of B.

1 Introduction

An algebra C is a section of A if there is a subalgebra B ≤ A and a surjective homomorphism
ϕ : B → C. C is a proper section unless B = A and ϕ is an isomorphism. The class of
proper sections of A is denoted (HS− 1)A. A is critical if it is finite and does not belong
to the subvariety generated by its proper sections.

Problem 25 of H. Neumann’s book [9] asks the following question: If A and B are critical
groups generating the same variety, must the varieties generated by (HS−1)A and (HS−1)B
be the same? I. D. Macdonald had previously shown in [6] that the answer is affirmative if
A and B are p–groups. Assuming that V is generated by a critical p–group C, Macdonald
showed how to construct equations axiomatizing var((HS − 1)C) relative to V solely from
the fact that V is generated by a critical p–group. His construction of equations works the
same way for A or B when V = var(A) = var(B), so the result follows. Using properties
of the Frattini subgroup, R. Bryant gave an affirmative answer to Neumann’s question for
arbitrary finite groups in [1]. The same question for other types of algebras is considered in
the papers [10], [7], [11] and [5]. The last of these, by E. W. Kiss and S. M. Vovsi, subsumes
the others with respect to this question. In their paper, Kiss and Vovsi prove that if A and
B are critical algebras such that V := var(A) = var(B) is congruence permutable, then the
varieties generated by (HS−1)A and (HS−1)B are the same. Their proof is an elaboration
of Bryant’s argument. An interesting aspect of [5] is that the proof given seems to show that
the ‘correct’ generalization of the Frattini subgroup is a Frattini congruence, not a Frattini
subalgebra.

This note is a sequel to the Kiss–Vovsi paper. The first part proves, with simpler argu-
ments, a far broader result than any of those mentioned. Let A and B be critical algebras
generating the same variety. We give an easy necessary and sufficient condition for (HS−1)A
and (HS− 1)B to generate the same variety. From these conditions it is possible to deduce
that when A and B are simple then (HS−1)A and (HS−1)B do generate the same variety.
Weak local modularity hypotheses on A and B suffice to force (HS− 1)A and (HS− 1)B
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to generate the same variety. It will follow that if V := var(A) = var(B) is congruence
modular, then (HS− 1)A and (HS− 1)B generate the same variety. This solves a problem
raised in [5].

The Kiss–Vovsi definition of the Frattini congruence is re–introduced in Section 3, along
with a concept from [2] which I call the normalization of a subdirectly irreducible algebra.
If A is a finite subdirectly irreducible algebra with abelian monolith and A generates a
congruence modular variety, then it turns out that A is isomorphic to its normalization iff
its Frattini congruence is trivial. Any such algebra is critical.

2 Varieties Generated by Proper Sections

Let (S − 1)A denote the class of all proper subalgebras of A and (H − 1)A denote the
class of all proper homomorphic images of A. A finite algebra A is S–critical or H–critical
if it is not a member of the variety generated by (S − 1)A or (H− 1)A, respectively. Any
critical algebra is both S–critical and H–critical and any H–critical algebra is subdirectly
irreducible.

The following simple lemma allows us to avoid introducing the Frattini congruence in
our discussion of Neumann’s problem.

LEMMA 2.1 If A and B are S–critical and generate the same variety, then (S− 1)A and
(S− 1)B generate the same variety.

Proof. Let V denote var(A) = var(B) and setQ = SP(A)∩SP(B). Q is a quasivariety
which is contained in V and which contains the free algebras of V. Since V is finitely
generated, Q contains a finite relatively free algebra which generates V. Choose C to be a
member of Q which generates V and has least cardinality for this property.

Claim. (S− 1)C and (S− 1)A generate the same variety.

Proof of Claim. By the minimality hypothesis on C, any proper subalgebra of C
generates a proper subvariety of V. Hence, no proper subalgebra of C has a homomorphism
onto A. Since all subalgebras of C belong to SP(A), it follows that (S−1)C ⊆ SP((S−1)A).
Hence (S− 1)C is contained in var((S− 1)A). Conversely, since C generates V, C ∈ SP(A)
and (S−1)A doesn’t generate V, it follows that C has a homomorphism onto A. If h : C→ A
is onto and A′ is a proper subalgebra of A, then C′ := h−1(A′) is a proper subalgebra of C
which has a homomorphism onto A′. Hence, (S − 1)A is contained in var((S − 1)C). We
get that var((S− 1)A) = var((S− 1)C).

It follows from the Claim that var((S − 1)A) = var((S − 1)C) = var((S − 1)B). This
proves the lemma.

Lemma 2.1 corresponds to one half of Proposition 1 of [5] in the case that var(A) =
var(B) is a congruence permutable variety. In the other half of Proposition 1 of [5] it is
proved that when A and B are S–critical algebras in a congruence permutable variety and
var(A) = var(B), then A/ΦA

∼= B/ΦB, where Φ denotes the Frattini congruence (defined in
the next section). This other half of Proposition 1 can also be extended to arbitrary varieties
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by using the idea of the proof of Lemma 2.1. (In particular, if A and B are S–critical algebras
which generate the same variety and the Frattini congruence of A is trivial, then A ∼= B.)

If an algebra A is critical, it is subdirectly irreducible. Denote its monolith by µA.

THEOREM 2.2 Let A and B be critical algebras which generate the same variety. The
inclusion

var((HS− 1)A) ⊆ var((HS− 1)B)

holds if and only if
A/µA ∈ var((HS− 1)B).

Proof. Notice that (HS− 1)A = H[(S− 1)A]∪ (H− 1)A. Lemma 2.1 guarantees the
equality in

H[(S− 1)A] ⊆ var((S− 1)A) = var((S− 1)B) ⊆ var((HS− 1)B).

Therefore, the inclusion

var((HS− 1)A) ⊆ var((HS− 1)B)

holds if and only if
(H− 1)A ⊆ var((HS− 1)B).

But the condition (H− 1)A ⊆ var((HS− 1)B) is equivalent to A/µA ∈ var((HS− 1)B).

It follows from this theorem that critical algebras A and B which generate the same
variety have the property that

var((HS− 1)A) = var((HS− 1)B)

if and only if A/µA ∈ var((HS− 1)B) and B/µB ∈ var((HS− 1)A).

COROLLARY 2.3 If A and B are simple critical algebras which generate the same variety,
then (HS− 1)A and (HS− 1)B generate the same variety.

The Kiss–Vovsi result can be extended from congruence permutable varieties to congru-
ence modular varieties by simply combining Theorem 2.2 with their Proposition 2. Let’s see
how to extend it further still.

If A is a finite algebra and α ≺ β in Con (A), then the prime quotient 〈α, β〉 will be
called modular if the 〈α, β〉–minimal sets are of type 2 , 3 or 4 and these minimal sets have
empty tails. If the 〈α, β〉–minimal sets are of type 3 or 4 and these minimal sets have empty
tails, then 〈α, β〉 is distributive. Modular and distributive quotients have the following nice
properties. Assume that A′ is finite, h : A′ → A is onto and that 〈α, β〉 is a prime quotient
of A. Set α′ = h−1(α) and β ′ = h−1(β). If 〈α, β〉 is modular (distributive), then

(i) 〈α′, β ′〉 is modular (distributive), and

(ii) there is a homomorphism of Con (A′) onto a modular (distributive) lattice which sep-
arates α′ and β ′.

3



In particular, it follows that if all prime quotients of A are modular (distributive), then
Con (A) is a modular (distributive) lattice. For stronger results, Theorems 8.5 and 8.6 of [3]
can be rephrased to say that a locally finite variety V is congruence modular (distributive)
if and only if all prime quotients of finite members of V are modular (distributive).

LEMMA 2.4 Assume that A and B are critical algebras which generate the same variety
and that 〈0, µA〉 is distributive. Then A ∼= B and so var((HS− 1)A) = var((HS− 1)B).

Proof. If 〈0, µA〉 is distributive and A ∈ var(B), then a local version of Jónsson’s
Lemma proves that A ∈ HS(B). Since A 6∈ (HS− 1)B, it must be that A ∼= B.

For the next theorem, a congruence θ on a finite algebra is hereditarily modular if each
prime quotient 〈α, β〉 with 0 ≤ α ≺ β ≤ θ is modular.

THEOREM 2.5 Assume that A and B are critical algebras which generate the same
variety and that 〈0, µA〉 and 〈0, µB〉 are modular. If every abelian congruence on either A
or B is hereditarily modular, then var((HS− 1)A) = var((HS− 1)B).

Proof. Assume the hypotheses of the theorem, but that var((HS− 1)A) 6⊆ var((HS−
1)B). By Lemma 2.4, it must be that typ(0, µA) = typ(0, µB) = 2 . Since A ∈ var(B),
There is a finite algebra C which is a subdirect product of subdirectly irreducible algebras
from HS(B) for which there is an onto homomorphism h : C → A. Since C is a subdirect
product of subdirectly irreducible algebras from HS(B), C has meet–irreducible congruences
ηi, i < n, such that C/ηi ∈ HS(B). For each i, let η∗i denote the unique upper cover of ηi.
Let δ = ker h and let δ∗ be its unique upper cover. Let θ be the least congruence on C
such that C/θ ∈ var((HS− 1)B). Clearly, θ ≤ η∗i for all i while θ 6≤ ηi holds if and only if
C/ηi ∼= B. By rearranging indices if necessary, we may assume that θ 6≤ ηi for i < j and
that θ ≤ ηi for j ≤ i < n. (This implies that C/ηi ∼= B for i < j, in which case 〈ηi, η∗i 〉 is
modular of type 2 .) Since

0B =
∧

i<n

ηi ≤ θ ≤ (
∧

i<j

η∗i ) ∧ (
∧

j≤i<n
ηi),

and typ(ηi, η
∗
i ) = 2 for i < j, it must be that θ is abelian. If θ ≤ δ∗, then

A/µA
∼= C/δ∗ ∈ H(C/θ) ⊆ var((HS− 1)B).

But if this were so, then Theorem 2.2 would force var((HS− 1)A) ⊆ var((HS− 1)B) which
contradicts the assumption in the first sentence of this proof. Hence θ 6≤ δ∗ and so δ∗ < δ∨θ.
Since θ is abelian, δ is meet–irreducible and 〈δ, δ∗〉 is modular of type 2 , the interval I[δ, δ∨θ]
is abelian. It follows that h(δ ∨ θ) is an abelian congruence of A. By hypothesis, h(δ ∨ θ) is
hereditarily modular. Therefore, every prime quotient in the interval I[δ, δ ∨ θ] of Con (C)
is modular.

The following comparabilities and non–comparabilities in Con (C) have been established:

(i) 0 =
∧
i<n ηi ≤ θ ≤ ∧i<n η∗i .

(ii) θ ≤ ηi for all j ≤ i < n.
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(iii) θ 6≤ ηi for i < j.

(iv) θ 6≤ δ∗.

Con (C) has a homomorphism onto a modular lattice which separates all modular prime
quotients. Such a homomorphism preserves all the comparabilities listed, of course. It also
preserves the listed non–comparabilities, since 〈ηi, η∗i 〉 is modular for i < j and every prime
quotient in the interval I[δ, δ ∨ θ] is modular. We may henceforth assume that Con (C) is
a modular lattice, as long as we depend only the comparabilities and non–comparabilities
listed in this paragraph.

Let λ =
∧
i<n η

∗
i . By modularity, we have (ηi∧λ) ≺ λ whenever λ 6≤ ηi. Since

∧
i<n ηi = 0,

the zero congruence is a meet of lower covers of λ. Therefore, the interval I[0, λ] is a
complemented modular lattice; hence I[0∨ δ, λ∨ δ] is a complemented modular lattice. But
δ is meet–irreducible, so we must have λ∨δ ≤ δ∗. Since θ ≤ λ, this gives us the contradiction
that θ ≤ δ∗.

Theorem 2.5 solves the problem raised in [5] since, when var(A) = var(B) is congruence
modular, then all prime quotients of A and B are modular.

We mention that there are critical algebras such that var(A) = var(B) but for which
var((HS− 1)A) 6= var((HS− 1)B). Such examples can be easily constructed where var(A)
= var(B) is a variety of G–sets.

3 Normalization

In this section we discuss a process called ‘normalization’ which converts a subdirectly irre-
ducible algebra (in a congruence modular variety) into a better–behaved and related algebra.
This process is described in [2], but not named.

We shall follow the notation of [2] except in the following cases: First, when R is a binary
relation on S we will write S×RS×R · · ·×RS, with n factors, to denote the subset of Sn which
consists of the tuples (s1, . . . , sn) with (si, si+1) ∈ R. If A is an algebra and α is a congruence,
we use boldface notation A ×α · · · ×α A to indicate the subalgebra of An supported by
A×α · · ·×αA. (This notation differs from [2] in the following way: what we write as A×αA
is denoted by A(α) in [2].) Next, we will write Â in this section for something which is
denoted D(A) in [2]. Finally, if A is an algebra, B is a subalgebra and θ is a congruence on
A, then Bθ denotes the subalgebra of A whose universe is {x ∈ A | ∃y ∈ B ((x, y) ∈ θ)}.
(This notion does not occur in [2].)

Definition 3.1 Assume that A is a subdirectly irreducible algebra with monolith µ. The
normalization of A is defined as follows: if µ is nonabelian, then the normalization of A is
A; if µ is abelian, then the normalization of A is

Â := (A×µ A)/∆µ,(0:µ).

The congruence (µ0 + ∆µ,(0:µ))/∆µ,(0:µ) on Â is denoted µ̂. A is normal if it is isomorphic to
its normalization.
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The next lemma summarizes those properties of the normalization which are proved in
[2].

LEMMA 3.2 Let K be a finite set of finite algebras and A be a subdirectly irreducible
algebra. Assume that var(K) and var(A) are congruence modular. Let µ be the monolith of
A.

(i) Â is a normal subdirectly irreducible algebra and µ̂ is its monolith.

(ii) A/(0 : µ) ∼= Â/(0 : µ̂).

(iii) (0 : µ̂) = µ̂.

(iv) µ̂ is the kernel of a retraction.

(v) If A ∈ var(K), then Â is isomorphic to the normalization of some subdirectly irre-
ducible algebra in HS(K).

We will require the following technical lemma.

LEMMA 3.3 Let A be a finite subdirectly irreducible algebra with abelian monolith µ. If
var(A) is congruence modular, then |Â| ≤ |A| with equality holding iff µ = (0 : µ).

Sketch of Proof. Let C1, . . . , Cm be an enumeration of the (0 : µ)–classes of A. Each
µ–class is a subset of some Ci and the different µ–classes in a single Ci have the same size.
Therefore, the size of each Ci is determined by the size si and number ni of µ–classes it
contains. This implies that |A| = Σm

i=1|Ci| = Σm
i=1nisi.

Now, in A ×µ A we have (0 : µ)0 = (0 : µ0) and that each (0 : µ)0–class is of the form
Ci ×µ Ci for a uniquely chosen i. Each such (0 : µ)0–class contains ni different µ0–classes
and they are of size s2

i . Using this, one calculates that

|A×µ A| = Σm
i=1nis

2
i .

Each (0 : µ)0–class C is a union of ∆µ,(0:µ)–classes and, by examining ∆µ,(0:µ) on C, one
can show that for a single µ0–class D ⊆ C we have that every element of C is ∆µ,(0:µ)–
related to some element of D and that D intersects exactly si of the ∆µ,(0:µ)–classes. Hence,
|C/∆µ,(0:µ)| = si. This yields

|Â| = Σm
i=1si ≤ Σm

i=1nisi = |A|.

Furthermore, equality holds iff each ni = 1, which means exactly that µ = (0 : µ).

LEMMA 3.4 Let A be a subdirectly irreducible algebra which generates a congruence
modular variety. If the monolith µ of A is abelian, then A is normal iff

(i) µ = (0 : µ) and

(ii) µ is the kernel of a retraction.
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Proof. By Lemma 3.2, both (i) and (ii) of this lemma hold in the normalization of A,
hence in A. We will argue that if (i) and (ii) hold, then A is isomorphic to its normalization.

Let ρ : A→ A be a retraction of A with kernel µ. Define a homomorphism

ψ : A×µ A→ A×µ A×µ A : (a, b) 7→ (a, b, ρ(a)) = (a, b, ρ(b)).

If d(x, y, z) is a difference term for var(A), then by Proposition 5.7 we have that

d : A×µ A×µ A→ A : (a, b, c) 7→ d(a, b, c)

is a homomorphism. The composite dψ : A×µ A → A is easily checked to be a surjective
homomorphism with kernel ∆µ,µ. Hence,

A ∼= (A×µ A)/∆µ,µ.

Since µ = (0 : µ), the algebra on the righthand side is the normalization of A. This finishes
the proof.

Somewhat surprisingly, condition (i) of Lemma 3.4 is extraneous. That is, in a congruence
modular variety, a subdirectly irreducible with abelian monolith is normal iff its monolith is
the kernel of a retraction. This fact is a consequence of the following lemma (whose proof
does not require congruence modularity).

LEMMA 3.5 Let A be a subdirectly irreducible algebra with monolith µ. If µ is the kernel
of a retraction, then (0 : µ) ≤ µ.

Proof. Assume otherwise that µ is the kernel of the retraction ρ : A → A and that
µ < (0 : µ). Let B = ρ(A). Since ker ρ = µ < (0 : µ), there exists (c, d) ∈ (0 : µ)|B − 0B.
Choose b ∈ B such that |b/µ| > 1 and then pick a ∈ A− B such that (a, b) ∈ µ. Since

µ = CgA(a, b) ≤ CgA(c, d),

there is a Mal’cev chain connecting a to b by polynomial images of {c, d}. Since b ∈ B and
a 6∈ B, this implies the existence of a polynomial p ∈ Pol1A such that p(c) = u ∈ B and
p(d) = v 6∈ B or the same with c and d interchanged. Assume that p(x) = tA(x, w1, . . . , wn)
where t is a term and wi ∈ A. Applying ρ to the equality tA(c, w1, . . . , wn) = u (and using
ρ(c) = c, ρ(u) = u) yields

tA(c, ρ(w1), . . . , ρ(wn)) = tA(ρ(c), ρ(w1), . . . , ρ(wn)) = ρ(u) = u = tA(c, w1, . . . , wn).

Now, using that (c, d) ∈ (0 : µ) and (wi, ρ(wi)) ∈ ker ρ = µ we can change the c to d to get

tA(d, ρ(w1), . . . , ρ(wn)) = tA(d, w1, . . . , wn) = v.

But this is impossible! We have d, ρ(wi) ∈ B, so

v = tA(d, ρ(w1), . . . , ρ(wn)) = tB(d, ρ(w1), . . . , ρ(wn)) ∈ B,

and yet we chose v = p(d) ∈ A− B. This ends the proof.
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The argument just given establishes a more general (and more technical) result than we
claimed. Although we see no use for the more general result now, we include its statement for
completeness: if A is an arbitrary algebra, ρ : A→ A is an arbitrary retraction, µ = ker ρ,
B = ρ(A) and θ = CgA((0 : µ)|B) (that is, θ is the extension of the contraction of (0 : µ)),
then Bθ = B. In the case of the lemma, A is subdirectly irreducible with monolith µ. In
this case, µ < (0 : µ) implies µ ≤ θ which leads to the contradiction

A = Bµ ≤ Bθ = B.

We connect the foregoing with the Frattini congruence and critical algebras.

Definition 3.6 If A is an algebra, B is a subalgebra of A and θ is a congruence on A, then
we say that B contains θ if Bθ = B. Let ΦA be the join of all congruences θ which are
contained in all maximal proper subalgebras of A. ΦA is the Frattini congruence of A.

It is easy to see that ΦA is the largest congruence contained in all maximal proper
subalgebras of A. Let’s call a congruence θ on A non-generating if

Bθ = A =⇒ B = A

whenever B is a subalgebra of A. It is straightforward to see that the Frattini congruence
majorizes every non-generating congruence and, when A is finitely generated, the Frattini
congruence is the largest non-generating congruence.

THEOREM 3.7 Let A be a finite subdirectly irreducible algebra which generates a con-
gruence modular variety. Assume that the monolith µ of A is abelian. The following
implications hold among the conditions enumerated below: (i)⇐⇒ (ii) =⇒ (iii) =⇒ (iv).

(i) A has trivial Frattini congruence.

(ii) µ is the kernel of a retraction.

(iii) µ = (0 : µ).

(iv) A is critical.

Proof. We will argue that (ii) =⇒ (i) =⇒ (ii) =⇒ (iii) =⇒ (iv).
Assume that (ii) holds. Since µ is the kernel of a retraction it cannot be a non-generating

congruence. For suppose that ρ : A → A is a retraction with ρ(A) = B and µ = ker ρ.
Then Bµ = A even though B 6= A. Hence, when (ii) holds, the Frattini congruence is not
above µ. This proves (i). (Here is a different argument: Since A is finite and µ is a minimal
abelian congruence, Theorem 2.1 of [4] can be used to show that B := ρ(A) is a maximal
subalgebra. B does not contain µ, so µ 6≤ ΦA.)

If (i) holds, then µ is not contained in some maximal proper subalgebra B ≤ A. The
congruence µ is abelian and not contained in B, so Theorem 2.1 of [4] proves that µ|B = 0B.
Hence, B is a µ–transversal. It follows that µ is the kernel of a retraction onto B.

The implication (ii) =⇒ (iii) follows from Lemma 3.4. We now prove that if A is
subdirectly irreducible and µ = (0 : µ), then A 6∈ var((HS − 1)A). For Â equal to the
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normalization of A, we have Â ∈ var(A). Therefore, to prove A 6∈ var((HS − 1)A) it will
suffice to prove that Â 6∈ var((HS − 1)A). Assume otherwise that Â ∈ var((HS − 1)A).
From Lemma 3.2 (v), we get that Â is the normalization of some subdirectly irreducible
algebra B ∈ HS((HS− 1)A) = (HS− 1)A. But now (referring to Lemma 3.3), we have a
cardinality problem:

|Â| ≤ |B| < |A| = |Â|.
(The equality |A| = |Â| follows from the fact that µ = (0 : µ).) This contradiction concludes
the proof.

The only implication in this proof which requires congruence modularity is (iii) =⇒ (iv).
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