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1 Introduction

A clone is trivial if every operation is a projection. A clone is minimal if it is not trivial,
but its only proper subclone is trivial. If C is a clone generated by the operation f , then an
f-representation of C is a pair A = 〈A; fA〉 where A is a set, fA is an operation on A, and
the assignment f 7→ fA extends to a clone homomorphism from C to the concrete clone of
operations on A. A representation is faithful if the assignment f 7→ fA extends to a clone
isomorphism from C to the clone of operations on A generated by fA. A representation
〈A; fA〉 is finite if A is.

If f is an m-ary operation of a clone C and g is an n-ary operation of C, then f and g
commute if the following relation holds:

g


f




x11
...

xm1


 , . . . , f




x1n
...

xmn





 = f




g(x11, . . . , x1n)
...

g(xm1, . . . , xmn)


 .

If any two operations in C commute, then C is said to be a commutative clone. (Com-
mutative clones are sometimes called entropic clones.) By a commutative operation
we mean an operation which commutes with itself. It is easy to see that a commutative
operation generates a commutative clone.

In this paper we classify all commutative minimal clones up to isomorphism. The state-
ment of the classification theorem is contained in Lemma 2.1 and Theorems 2.2, 2.3, 3.20
and 4.6. Most of the minimal clones we list were known before (cf. [5]), although our clas-
sification does include new minimal clones constructed from irreducible representations of

∗This work was completed during the 1997 working meeting on modes at the Stefan Banach International
Mathematical Center. Financial support from the Banach Center is gratefully acknowledged.
†Research supported by the Hungarian National Foundation for Scientific Research grant no. T 022867

and Ministry of Culture and Education grant no. FKFP 0877/1997.

1



symmetric groups. Aside from these new clones, the main contribution of this paper is the
proof of the completeness of the list.

It is possible to give a shorter proof of the classification theorem if one is willing to
consider only minimal clones that have finite faithful representations. We do not assume
finiteness. However, although there exist minimal clones that fail to have a finite faithful
representation, it is a corollary of the classification that there are no such commutative
minimal clones.

2 Elementary Observations

The purpose of this section is to reduce our problem to two special cases, which we treat in
following sections.

LEMMA 2.1 ([9], Proposition 1.12) Let C be a nontrivial clone. If f ∈ C is an operation
whose arity is minimal among operations in C which are not projections, then up to a
permutation of variables f is one of the following operations:

(I) A unary operation which is not a projection.

(II) An idempotent essentially binary operation.

(III) An operation M(x, y, z) satisfying the majority laws:

M(x, x, y) = M(x, y, x) = M(y, x, x) = x.

(IV) An operation m(x, y, z) satisfying the minority laws:

m(x, x, y) = m(x, y, x) = m(y, x, x) = y.

(V) An operation s(x,y) = s(x, y1, . . . , yn) of arity 3 or more, which depends on all vari-
ables, and which satisfies the semiprojection laws: for any 0 ≤ i < j ≤ n

s(x0, . . . , xi−1, xi, xi+1, . . . , xj−1, xi, xj+1, . . . , xn) = x0. 2

The kind of operation which characterizes each of the types (III)− (V ) will be called a
majority operation, a minority operation, or a semiprojection, respectively. In this
paper, “semiprojection” always means “first-variable semiprojection”.

It is not hard to see that a minimal clone which contains an operation of one of these
five types cannot contain one of the other types. Let us therefore divide minimal clones into
types (I)− (V ) according to which case we are in in the previous lemma.

The only types of minimal clones which have been thoroughly classified are types (I) and
(IV ). The nontrivial part of this classification (type (IV )) was done by I. Rosenberg [8].
Proofs of the following can be found in [3] and [9].

THEOREM 2.2 Up to isomorphism, the only minimal clones of type (I) are the following:
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(1) The clone generated by a unary operation f such that f p(x) = x for some prime p,
but f(x) 6= x.

(2) The clone generated by a unary operation f such that f(x) = f(y), but f(x) 6= x.

(3) The clone generated by a unary operation f such that f 2(x) = f(x), but f(x) 6= f(y)
and f(x) 6= x.

Up to isomorphism, the only minimal clone of type (IV ) is the clone of affine Boolean groups.
(I.e., the clone of 〈{0, 1}; x+ y + z (mod 2)〉.) 2

Notice that all the clones in Theorem 2.2 are commutative, and all have finite faithful
representations.

There are no commutative minimal clones of type (III), as we now show.

THEOREM 2.3 A majority operation M(x, y, z) on a set of size > 1 is not commutative.

Proof: A majority operation does not commute with itself on any array of the following
form: 


x x x
x y y
y y x


 , x 6= y. 2

We have reduced our problem to the consideration of minimal clones of types (II) and
(V ) only. We shall follow roughly the same plan to classify the commutative minimal clones
of these two types: we shall climb the lattice of varieties of the appropriate signature which
have a commutative clone, identifying minimal clones as we go along, until we run out of
minimal clones. Fortunately, we will not have far to climb.

3 Binary Clones

In this section we consider commutative minimal clones of type (II). These are the min-
imal clones of algebras defined with one basic operation which is binary, idempotent, and
which commutes with itself. An algebra defined with one basic operation which is binary
is called a groupoid. The clone of a groupoid is commutative precisely when the equation
(xu)(vy) = (xv)(uy) holds. To avoid any confusion with groupoids satisfying the equation
xy = yx, which is another kind of commutative law, we shall call a groupoid whose clone is
commutative an entropic groupoid in this section.

Our strategy in this section is to look at the lattice of subvarieties of the variety of
idempotent entropic groupoids until we have located all varieties whose clone is minimal.

If V is a variety and E is an equationally complete subvariety, then we call E a completion
of V. If V has a minimal clone and E is a completion of V, then the clone of E must be minimal
or trivial. To restate our strategy more precisely, we will classify varieties of idempotent
entropic groupoids with minimal clone by considering, in a case-by-case way, which of these
varieties have a given set of completions. For this task, we need to begin by considering
the equationally complete varieties of idempotent entropic groupoids. A description of these
varieties follows from the next theorem, which restates a result from [2].
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THEOREM 3.1 An equationally complete idempotent variety with commutative clone is
term equivalent to the variety of sets, the variety of semilattices, or a variety of affine vector
spaces over a field. 2

In this theorem, an affine vector space is the idempotent reduct of a vector space.
Theorem 3.1 is only a description of the possible completions up to term equivalence,

and we need a more precise description for our arguments. Therefore, note that a variety
V of groupoids is term equivalent to the variety of sets if and only if V is the variety of
left zero groupoids or the variety of right zero groupoids, denoted LZ and RZ respectively.
Both varieties have trivial clones. Note that the only variety of groupoids term equivalent
to the variety of semilattices is the variety of semilattices, which we denote S. This variety
has a minimal clone. Next, if a variety V of groupoids is term equivalent to the variety of
affine F-vector spaces, then the groupoid operation must be equal to an affine operation
rx+(1−r)y for some r ∈ F −{0, 1} which generates F as a ring. Moreover, if r ∈ F −{0, 1}
is such that rx + (1 − r)y generates the clone of all affine F-vector space operations, and
r′ ∈ F ′ − {0, 1} is such that r′x + (1− r′)y generates the clone of all affine F′-vector space
operations, then rx+ (1− r)y and r′x+ (1− r′)y determine the same variety of groupoids if
and only if there is an isomorphism from F to F′ which takes r to r′. Finally, if the subclone
generated by the affine vector space operation x−y+z is not a proper (nontrivial) subclone,
then F must be a finite field with a prime number of elements. The prime involved must be
odd for clones of type (II). Therefore finite prime fields of odd cardinality will be the only
ones that interest us. Such fields are rigid, so each r ∈ F −{0, 1} will yield a different variety
of groupoids. We will denote the different varieties by A(F, r) where F is a finite prime field
of odd cardinality and r ∈ F − {0, 1}. Each of these varieties has a minimal clone. A(F, r)
and A(F′, r′) have isomorphic clones if and only if F ∼= F′.

THEOREM 3.2 The equationally complete varieties of idempotent entropic groupoids
which have a minimal or trivial clone are LZ,RZ,S and A(F, r) for F a finite prime field
of odd cardinality and r ∈ F − {0, 1}. 2

This theorem can also be deduced from Theorem 3.3 of [1].
Now let V be an entropic variety of groupoids which has a minimal clone. According to

the theorem, the completions of V are among LZ,RZ,S and A(F, r) for F a finite prime
field of odd cardinality and r ∈ F − {0, 1}. For each possible subset

K ⊆ {LZ,RZ,S} ∪ {A(F, r) | F a finite prime field of odd cardinality and r ∈ F − {0, 1}}
we will find the possibilities for such V given that the set of completions of V is K. Our
work is reduced by the main result of [3], which implies the following result.

THEOREM 3.3 Let V be a variety which has a minimal clone. If A ∈ V is an abelian
algebra whose clone is not trivial, then A generates V. 2

The variety LZ∨RZ = LZ×RZ is the variety of rectangular bands. Every rectangular
band is abelian. A rectangular band which is neither a left zero groupoid nor a right zero
groupoid has a nontrivial clone. Thus, each algebra in (LZ∨RZ)−(LZ∪RZ) is an abelian
algebra whose clone is not trivial. Moreover, each nontrivial algebra in A(F, r) is an abelian
algebra whose clone is not trivial. Therefore we deduce the following.
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COROLLARY 3.4 Let V be a variety of groupoids which has a minimal clone.

(1) If V contains LZ and RZ, then V = LZ ∨RZ .

(2) If V contains some A(F, r), then V = A(F, r). 2

Thus, we no longer need to consider varieties containing any A(F, r), or varieties contain-
ing both LZ and RZ . In fact, because of left-right symmetry, we only have to understand
the structure of varieties V whose set of completions is a subset of {LZ,S}.

3.1 S is the Only Completion

This is the easiest of the cases we must consider.

THEOREM 3.5 If V is a variety of idempotent entropic groupoids whose clone is minimal,
and the only completion of V is S, then V = S.

Proof: Assume that V is a variety of idempotent entropic groupoids whose clone is
minimal, and which has S as its only completion. If A ∈ V is abelian, and has a nontrivial
clone, then V is generated by A according to Theorem 3.3. But the varieties which are
generated by abelian algebras with minimal clones are listed at the end of [3], and none
of these varieties has a completion term equivalent to S. Therefore V can have no abelian
algebra with a nontrivial clone. V also cannot have a nontrivial abelian algebra B with
a trivial clone, or else a completion of HSP(B) ⊆ V would have a trivial clone. But by
hypothesis the only possible completion is S, whose clone is nontrivial, hence V contains no
nontrivial abelian algebra whatsoever.

Corollary 3.4 of [4] proves that a variety of idempotent entropic groupoids which contains
no nontrivial abelian algebras has a semilattice term. Thus, V has a semilattice term which
(by minimality) generates its clone. This forces V to be term equivalent to the variety of
semilattices. As mentioned before, the only variety of groupoids term equivalent to the
variety of semilattices is the variety of semilattices, so V = S. 2

3.2 LZ is the Only Completion

Our goal in this subsection is to prove the following theorem.

THEOREM 3.6 If V is a variety of idempotent entropic groupoids whose clone is minimal,
and the only completion of V is LZ, then V is one of the following varieties:

(1) The variety of right semilattices, which is axiomatized by the idempotent and en-
tropic laws together with x(xy) = x and (xy)y = xy.

(2) A variety of p-cyclic groupoids, which is axiomatized by the idempotent and entropic
laws together with x(xy) = x and (· · · ((xy)y) · · ·)y︸ ︷︷ ︸

p y’s

= x, where p is a prime number.
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We prove this theorem in two steps. That which is logically the first step, but which we
shall postpone until the end of this subsection, is a proof that if V is a variety of idempotent
entropic groupoids whose clone is minimal, and the only completion of V is LZ, then V |=
x(xy) = x. The second step, which we shall deal with immediately, is a proof that describes
the structure of V assuming that V |= x(xy) = x. Our arguments will require a good
understanding of the terms of V. We have been informed that everything we need in this
section can be found in [7]. However, since the more complicated arguments used in Section 4
are modeled on the arguments we use here, we include proofs in this section rather than
references to proofs.

LEMMA 3.7 Let V be a variety of idempotent entropic groupoids satisfying x(xy) = x.
Then V satisfies the equations

(1) x(yz) = xy and

(2) (xy)z = (xz)y.

Proof: For the first item, we use the entropic law as follows: x(yz) = (x(xy))(yz) =
(xy)((xy)z) = xy. For the second item, we use idempotence, entropicity and the first item:
(xy)z = (xy)(zz) = (xz)(yz) = (xz)y. 2

In fact, it is easy to see that a variety of groupoids satisfying x(xy) = x is idempotent
and entropic if and only if it satisfies equations (1) and (2) of Lemma 3.7.

LEMMA 3.8 If V is a variety of idempotent entropic groupoids satisfying x(xy) = x which
has a minimal clone, then V is one of the following varieties:

(1) The variety of right semilattices.

(2) A variety of p-cyclic groupoids.

Proof: Let’s try to understand the structure of the terms of V. Since V is a variety of
groupoids, every term has an associated binary composition tree, where each leaf is labelled
with a variable and each internal node represents an application of the groupoid operation.
(In particular, each internal node has exactly two children.) The equations of V allow us to
reduce each term to a V-equivalent term with a particularly simple composition tree.

The equation x(yz) = xy, which we established in Lemma 3.7, implies that the following
reduction can be performed locally in any tree.

s
s

s
s
s

s
s
s�

�
�
��

�
�
�
��

A
A
A
A
A
A
A
AA

�
�
�
��

A
A
A
AA

=⇒
x

y z

x y

Figure 1: x(yz) = xy.
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Since this reduction can be performed locally, it is always possible to reduce any term to a
V-equivalent term where no node has a right-right grandchild. Equivalently, we can reduce
until we have a tree where the right child of any internal node is a leaf. Therefore any term
may be assumed to be reduced to one whose tree has the following structure.

s
s
s
s
s
s
s

s
s

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

A
A
A
AA

A
A
A
AA

A
A
A
AA

A
A
A
AA

Figure 2: Reduced form.

This implies that any term is V-equivalent to a left-associated product of variables, and
therefore is a specialization of a product of the form

xy1y2 · · ·yn := (· · · ((xy1)y2) · · ·)yn

where the variables are distinct. The equation (xy)z = (xz)y, from Lemma 3.7, implies
that any permutation of the order of the variables in a left-associated product which fixes
the leftmost variable produces a V-equivalent term. We may therefore assume that the
leftmost variable occurs at most once, for in the left-associated product xy1y2 · · ·x · · · yn we
can permute the variables in a way that fixes the leftmost x and moves the other x adjacent
to it: xxy1y2 · · · yn. Such a term reduces to xy1y2 · · · yn via the idempotent law.

Using the notation xye to denote the left-associated product xyy · · · y, with e occurrences
of y, we summarize our observations as follows.

Claim 3.9 If V is a variety of idempotent entropic groupoids satisfying the equation x(xy) =
x, then every (k+ 1)-ary term with leftmost variable x is V-equivalent to a term of the form
xye11 · · ·yekk for some e1, . . . , ek ≥ 0, where the order of the variables y1, . . . , yk is irrelevant.

Note that V-equivalent terms have the same leftmost variable, namely the unique variable
x for which the terms interpret in the subvariety LZ of V as x. Therefore it makes sense to
talk about the leftmost variable of a term of V. If a term of V is given in the form described
in Claim 3.9, then its leftmost variable is clearly x.

Let us consider now the set M of all terms of V whose set of variables is {x, y} and whose
leftmost variable x. By Claim 3.9 M consists of all binary terms m(x, y) := xym (m ≥ 0),
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where by definition 0(x, y) = x. For any m, n ∈M we have n(m(x, y), y) = xym+n. Therefore
we can introduce an addition on M by defining

(m + n)(x, y) := n(m(x, y), y) = xym+n.

The algebra M = 〈M ; +, 0〉 is a monoid which is generated by the single element 1 ∈M.
Making use of the assumption that the clone of V is minimal, we will now show that M

has no nontrivial proper submonoids. Monoids with this property will be called minimal
monoids.

Claim 3.10 If V satisfies all assumptions of the lemma, then M is a minimal monoid.

Proof of Claim: We know from Claim 3.9 that every binary term of V is of the form
m(x, y) or m(y, x) for some m ∈ M. Furthermore, the term reductions discussed prior to
that claim yield that for arbitrary elements m, n, k ∈ M and for both (u, v) = (x, y) and
(u, v) = (y, x) we have

m(n(u, v), k(u, v)) = n(u, v) and m(n(u, v), k(v, u)) = (m + n)(u, v).

This implies that if N is a submonoid of M, then the subclone of the clone of V generated by
all terms in N has the property that its only binary terms are those V-equivalent to n(x, y)
or n(y, x) for some n ∈ N. Since the clone of V is minimal, N must be equal to M or {0}.
Hence the monoid M is minimal.

Claim 3.11 Every minimal monoid M = 〈M ; +, 0〉 is isomorphic to the 2-element semilat-
tice or a cyclic group of prime order.

Proof of Claim: Assume that M has an idempotent element e different from 0. Then
since {0, e} is a nontrivial submonoid we must have M = {0, e}, and + must be a semilattice
operation on M .

Now assume that 0 is the only idempotent of M. Since M has no proper nontrivial
submonoids, any g ∈M − {0} generates M. Fix such a generator g. If g has infinite order,
then M = {0, g, 2g, 3g, . . .}. But now N = {0, 2g, 4g, . . .} is a proper nontrivial submonoid.
This is a impossible, so g must have finite order. Because of this, the sequence g, 2g, 3g, . . .
contains an idempotent, which can only be 0. This implies that M is a cyclic group. Since
M has no proper nontrivial subgroups, it must be a cyclic group of prime order.

We apply the previous claim to the minimal monoid M corresponding to the variety V.
If M is the 2-element semilattice, then M = {0, 1}. By the equations listed earlier,

(xy)y = (1 + 1)(x, y) = 1(x, y) = xy.

Since the hypotheses of this lemma include that V is an idempotent entropic variety of
groupoids satisfying x(xy) = x, this additional equation (xy)y = xy implies that V is a
subvariety of the variety of right semilattices.
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If M is a cyclic group of prime order p, then M = {0, 1, . . . , p− 1}. By the equations
listed earlier,

xyp = (1 + · · ·+ 1︸ ︷︷ ︸
p 1’s

)(x, y) = 0(x, y) = x.

It follows that V satisfies the equations that axiomatize the variety of p-cyclic groupoids, so
V is a subvariety of the variety of p-cyclic groupoids.

We now know that V has a minimal (hence nontrivial) clone and that V is a subvariety
of the variety of right semilattices or a variety of p-cyclic groupoids. The following claim
completes the proof of this lemma.

Claim 3.12 The variety of right semilattices has a minimal clone and the property that
its only nontrivial proper subvariety is LZ. The same statement is true for any variety of
p-cyclic groupoids.

Proof of Claim: The proof of this claim for any variety of p-cyclic groupoids appears
at the end of the proof of Lemma 3.5 of [3]. Therefore we prove the claim for the variety of
right semilattices only.

Assume that W is a subvariety of the variety of right semilattices. Since W satisfies the
assumptions of Claim 3.9, the terms of W can be written in the form described there. The
equation (xy)y = xy allows us to further reduce terms where some variable occurs more than
once. Thus, a typical term is W-equivalent to a left-associated product xy1 · · · yn−1yn where
all variables are distinct, and the order of y1, . . . , yn is irrelevant. Observe that the clone
generated by each such term with n ≥ 1 contains xx · · ·xy = xy. This proves that the clone
of W is minimal.

Now assume that W is a proper subvariety of the variety of right semilattices. Then
there is an equation r = s which holds in V but fails in the variety of right semilattices. We
may assume that both r and s are left-associated products of distinct variables. If r and s
have the same leftmost variable, then it must be that the set of variables occurring in r is
not the same as the set which occurs in s. Assume that y occurs in s but not in r. If we set
all variables other than y equal to x, then r = s specializes to x = xy. In the case when r
and s have different leftmost variables, say x and y respectively, we can apply equation (1)
from Lemma 3.7 to conclude that x = xr = xs = xy. The equation x = xy defines LZ, so
in both cases we get that W ⊆ LZ. 2

Now we proceed to show that x(xy) = x must hold in V. For this purpose, the following
lemma will be useful.

LEMMA 3.13 (Lemma 3.5 of [4]) Let A be an idempotent entropic groupoid and let U ⊆ A
be a subset. If an equation r(x1, . . . , xn) = s(x1, . . . , xn) holds whenever all xi lie in U , then
the same equation holds when all xi lie in the subgroupoid of A generated by U . 2

LEMMA 3.14 If V is an idempotent entropic variety of groupoids whose clone is minimal,
and the only completion of V is LZ, then V |= x(xy) = x.
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Proof: Assume instead that there is V satisfying all hypotheses, except V 6|= x(xy) = x.
Then V contains a groupoid A generated by a pair of elements {a, b} such that either
a(ab) 6= a or b(ba) 6= b, or both. By factoring by a maximal congruence which maintains at
least one of these inequalities, we may assume that A is subdirectly irreducible with monolith
µ, and that a(ab) ≡µ a and b(ba) ≡µ b.

Let B be any nontrivial µ-class, and let B be the subgroupoid of A supported by B.
According to the results in [4], B must be term equivalent to a two-element semilattice, a
quasi-affine algebra with a cancellative binary term, an affine Boolean group, or to a set.
Moreover, it is shown in [4] that if B is a two-element semilattice, then A has a semilattice
term. Necessarily this term generates the clone of A, so A is in fact a subdirectly irreducible
semilattice; i.e., A = B. This is impossible since S is not a completion of V. B cannot
be affine either, for the same kind of reason, so B is not an affine Boolean group nor is B
quasi-affine with a cancellative binary term. The last part of this claim follows from the
main result of [3], which implies that a quasi-affine algebra with a cancellative binary term
which has a minimal clone is in fact affine. We are left only with the possibility that B is
term equivalent to a set. Thus B lies in a completion of V, and therefore B ∈ LZ. This
statement holds for any nontrivial µ-class of A.

Since a and a(ab) are µ-related, the operation xy is left zero on the set {a, a(ab)}. This
forces a(a(ab)) = a, and a similar argument shows that b(b(ba)) = b. Since A is idempotent,
this implies that the equation x(x(xy)) = x is satisfied for all x, y ∈ {a, b} =: U . Now we
use Lemma 3.13 to conclude that the subgroupoid generated by U = {a, b} (which is A) also
satisfies the equation x(x(xy)) = x.

We claim that x∗y := x(xy) generates the clone of A. Since the clone of A is minimal, it
suffices to verify that x∗y is not a projection. Since LZ |= xy = x, we have LZ |= x∗y = x.
But LZ is the only completion of HSP(A), therefore it is impossible for A to satisfy the
equation x ∗ y = y. It is also impossible for A to satisfy the equation x ∗ y = x, since we
chose A so that A 6|= x(xy) = x. Since A 6|= x ∗ y = x or y, therefore x ∗ y generates the
clone of A.

Let U = HSP(A). So far we know that xy is a term of U for which the following conditions
hold:

(a) LZ |= xy = x,

(b) U 6|= x(xy) = x and

(c) U |= x(x(xy)) = x.

We shall obtain a contradiction by showing that U can have no term with these properties.
First observe that condition (c) implies that

U |= x ∗ (x ∗ y) = x(x(x(xy))) = xx = x.

Thus U is term equivalent to a variety (defined in terms of the operation ∗) to which we can
apply Lemma 3.8: U is term equivalent to either the variety of right semilattices or a variety
of p-cyclic groupoids for some prime p. If the operation ∗ is a right semilattice term, then the
U -inequivalent binary terms are represented by: x, y, x ∗ y and y ∗ x. The terms t(x, y) from
this list for which LZ |= t(x, y) = x are just t(x, y) = x and t(x, y) = x ∗ y, and for both of
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these choices it is the case that U |= t(x, t(x, y)) = x. Thus the variety of right semilattices
has no binary term for which conditions (a) and (b) both hold. Now assume that U is term
equivalent to a variety of p-cyclic groupoids. In this case, a representative set of binary terms
of U are the left-associated products of the form x ∗ yi or y ∗ xi where 0 ≤ i < p. Those
for which condition (a) from above hold are just the terms of the form t(x, y) = x ∗ yi. But
again we have U |= t(x, t(x, y)) = x ∗xi = x, so no variety of p-cyclic groupoids has a binary
term xy for which conditions (a) and (b) both hold. We have established the contradiction
that concludes the proof. 2

Theorem 3.6 is a consequence of Lemmas 3.8 and 3.14.

3.3 LZ and S are Completions

In this subsection our goal is to prove the following.

THEOREM 3.15 If V is a variety of idempotent entropic groupoids whose clone is mini-
mal, and V has both LZ and S as completions, then V = LZ ∨ S.

Our method for proving this will be similar to what we did in the previous subsection. Let
V be an arbitrarily chosen idempotent entropic variety of groupoids with minimal clone whose
only completions are LZ and S. We shall prove later that V |= x(xy) = xy = (xy)y, but we
precede that argument with a proof that if V satisfies these equations, then V = LZ ∨ S.

LEMMA 3.16 Let V be a nontrivial variety of idempotent entropic groupoids such that
V |= x(xy) = xy = (xy)y. If the completions of V are among {LZ,S}, then V = LZ, S or
LZ ∨ S.

Proof: First we show that the equations stated in the theorem imply the associative
law.

x(yz) = (x(yz))(yz)
= (xy)((yz)z)
= (xy)(yz)
= (x(xy))(yz)
= (xy)((xy)z)
= (xy)z.

This shows that V is a variety of idempotent entropic semigroups, i.e., normal bands. It is
known that there are only eight varieties of normal bands, and they are different possible joins
of subsets of {LZ,RZ ,S} (cf. [6]). Those joins which are nontrivial and whose completions
are among {LZ,S} are just LZ, S and LZ ∨ S. The lemma follows from this. 2

Now we prove that the equations x(xy) = xy = (xy)y must hold if LZ and S are
completions of V.

LEMMA 3.17 If V is an idempotent entropic variety of groupoids whose clone is minimal,
and the completions of V are LZ and S, then V |= x(xy) = xy = (xy)y.
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Proof: To fix some terminology for this proof, we will say that a binary term t(x, y) is
idempotent in its first variable if V |= t(t(x, y), y) = t(x, y) and idempotent in its
second variable if V |= t(x, t(x, y)) = t(x, y). If both hold, then t(x, y) is idempotent in
both variables. The conclusion of the theorem is that xy is idempotent in both variables.

We shall assume that xy is not idempotent in both variables and argue to a contradiction.
Since xy is not idempotent in both variables, V contains a groupoid A generated by a pair
of elements {a, b} where at least one of the following inequalities holds:

a(ab) 6= ab, b(ba) 6= ba, (ab)b 6= ab, (ba)a 6= ba.

As explained in the proof of Lemma 3.14, we may assume that A is subdirectly irreducible
with monolith µ, and that a(ab) ≡µ ab ≡µ (ab)b and b(ba) ≡µ ba ≡µ (ba)a. Let B be any
nontrivial µ-class, and let B be the subgroupoid of A supported by B. As argued in the
proof of Lemma 3.14, if B is a two-element semilattice, then A = B. But this is impossible
if A 6|= x(xy) = xy = (xy)y, since these equations hold in a semilattice. Also, as argued
in Lemma 3.14, B cannot be a quasi-affine algebra with a cancellative binary term nor an
affine Boolean group. Thus we can conclude that B ∈ LZ here, just as we did in the proof
of Lemma 3.14. This holds for any µ-class B, so u ≡µ v =⇒ uv = u.

Claim 3.18 For any x, y ∈ {a, b}, either x(xy) = xy or x(xy) = x.

Proof of Claim: Assume that a(ab) 6= ab. Then, since a(ab) ≡µ ab and xy is left zero
on µ-classes, we have

[a(ab)](ab) = a(ab) 6= ab = (ab)(ab).

If Rab(x) is the mapping from A to A defined by x 7→ x(ab), then this shows that Rab(a(ab)) =
Rab(a) 6= Rab(ab). But Rab(x) is an endomorphism of A, since A is idempotent and entropic.
Thus ker(Rab) is a congruence which does not contain Cg(a(ab), ab) = µ. Since µ is the least
nonzero congruence of A, Rab is one-to-one. From Rab(a(ab)) = Rab(a) we deduce that
a(ab) = a. This proves the claim in the case where x = a and y = b. The same argument
works if x = b and y = a. The claim is true if x = y = a or x = y = b, since the groupoid
operation is idempotent.

It follows from the previous claim that for any x, y ∈ {a, b} we have x(x(xy)) = x(xy).
Thus, since {a, b} generates A, Lemma 3.13 shows that A |= x(x(xy)) = x(xy).

Claim 3.19 A 6|= x(xy) = x and A 6|= x(xy) = y.

Proof of Claim: Assume otherwise that A |= x(xy) = x or A |= x(xy) = y. Then
the same equation would hold in some completion of HSP(A) ⊆ V, therefore in LZ or S.
Neither equation holds in S, and only the first equation holds in LZ. Therefore let’s show
that the assumption that A |= x(xy) = x leads to a contradiction.

If 2 = 〈{0, 1}; xy〉 ∈ V is the two-element semilattice, then A × 2 ∈ V. The operation
x ∗ y := x(xy) does not generate a trivial subclone of the clone of A×2, since x ∗ y does not
generate a trivial subclone on the second factor algebra. However, if A |= x∗y = x(xy) = x,
then x ∗ y cannot generate the total clone of A×2, since it does not generate the total clone
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of the first factor. Thus if A |= x(xy) = x, then x ∗ y generates a proper nontrivial subclone
of A× 2 (and hence V). This is impossible if the clone of V is minimal.

The previous claim implies that x∗y := x(xy) generates the clone of A. What we proved
before this claim shows that A |= x ∗ (x ∗ y) = x(x(x(xy))) = x(xy) = x ∗ y, so x ∗ y
is idempotent in its second variable. We now argue that it is also idempotent in its first
variable. For this, we must show that A |= (x ∗ y) ∗ y = x ∗ y. Recall that A is generated by
{a, b} and that a(ab) ≡µ ab ≡µ (ab)b. Therefore

(a ∗ b) ∗ b = [a(ab)][[a(ab)]b] ≡µ [a(ab)][(ab)b] ≡µ [a(ab)][a(ab)] = a(ab) = a ∗ b.
Since xy is left zero on µ-classes, the same is true of x ∗ y, and consequently we deduce from
the last calculation that (a ∗ b) ∗ [(a ∗ b) ∗ b] = a ∗ b. Therefore, using that x ∗ y is idempotent
in its second variable, we have

(a ∗ b) ∗ b = (a ∗ b) ∗ [(a ∗ b) ∗ b] = a ∗ b.
Using the same argument with a and b interchanged shows that x ∗ y = (x ∗ y) ∗ y whenever
x, y ∈ {a, b}. Therefore, by Lemma 3.13, the equation (x ∗ y) ∗ y = x ∗ y holds in A.

Let U = HSP(A) ⊆ V. The clone of U is generated by x ∗ y, which is idempotent in
both variables. Since xy and x ∗ y agree in LZ and S, U is term equivalent to a variety of
idempotent entropic groupoids (defined in terms of the operation ∗) which has a minimal
clone, has LZ and S as completions, and which satisfies x ∗ (x ∗ y) = x ∗ y = (x ∗ y) ∗ y.
It follows from Lemma 3.16 that U ⊆ LZ ∨ S. This implies that {x, y, x ∗ y, y ∗ x} is a set
of terms representing all binary terms up to U -equivalence. But this is impossible, since all
four of these are idempotent in both variables, while xy is a binary term of U which is not
idempotent in at least one of its variables. This contradiction concludes the proof. 2

Theorem 3.15 is a consequence of Lemmas 3.16 and 3.17.

3.4 The List of Binary Clones

We summarize the results of the preceding subsections now concerning commutative minimal
clones of type (II). We shall describe only one presentation of each clone, and we shall list
clones up to isomorphism or anti-isomorphism only.

THEOREM 3.20 If C is a commutative minimal clone of type (II), then C is isomorphic
or anti-isomorphic to the clone of one of the following varieties:

(1) Affine spaces: A(F, r) for some prime field of odd cardinality and r ∈ F − {0, 1},
(2) Rectangular bands: LZ ∨RZ ,

(3) Semilattices: S,

(4) The variety of right semilattices,

(5) A variety of p-cyclic groupoids for some prime p, or

(6) Left normal bands: LZ ∨ S. 2

Note that each variety is generated by a finite algebra, so each clone on the list has a
finite faithful representation.
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4 Clones Generated by a Semiprojection

Although our strategy for type (V ) minimal clones is the same as for type (II), there are
fewer cases to consider in type (V ). The reason for this is that the only possible completion
of a variety whose clone is generated by a semiprojection s(x,y) of arity ≥ 3 is the subvariety
defined by the equation s(x,y) = x. (Reason: If V is the variety of s-representations and
A is a nontrivial member of some completion of V, then any two-element subset of A
is a subuniverse on which s(x,y) = x holds. The corresponding two-element subalgebra
generates the same completion as A. Thus A must lie in the equationally complete variety
where the s(x,y) = x holds.) Therefore our arguments in this section compare only to the
arguments in Subsection 3.2.

Let V be a variety whose clone is generated by a semiprojection s. The fact established
in the previous paragraph implies that in V every term f(x1, . . . , xk) has a distinguished
variable, namely the variable xi for which the identity f(x1, . . . , xk) = xi holds in the com-
pletion of V. This variable xi is uniquely determined since the variety V is not trivial. If we
express f in any way as a composition of s, then xi is the variable that occurs at the leftmost
leaf of the composition tree. Therefore xi will be referred to as the leftmost variable of f .

Our first lemma is the analogue of Lemma 3.7.

LEMMA 4.1 Let V be the variety of s-representations, where s(x,y) is an (n + 1)-ary
commutative semiprojection. Then V satisfies the equations

(1) s(x, y1, . . . , yi−1, s(yi, z), yi+1, . . . , yn) = s(x, y1, . . . , yi−1, yi, yi+1, . . . , yn), and

(2) s(s(x,y), z) = s(s(x, z),y).

Proof: The first equation follows from applying s to itself on the following matrix, and
then applying the semiprojection laws and the commutative law.




x y1 · · · yi−1 yi yi+1 · · · yn
x x · · · x z1 x · · · x
x x · · · x z2 x · · · x
...

...
...

...
...

...
x x · · · x zn x · · · x



.

The second equation follows in the same way from




x y1 · · · yn
z1 x · · · x
z2 x · · · x
...

...
...

zn x · · · x



. 2

LEMMA 4.2 Let C be a clone generated by a commutative (n+ 1)-ary semiprojection.
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(1) For m ≥ n every (m + 1)-ary member f(x,y) of C with leftmost variable x is of the
form

tr(· · · t2(t1(x, z1), z2) · · · , zr)
where z1, z2, . . . , zr is an enumeration of the subsequences of y = (y1, y2, . . . , ym) of
length n, and t1, t2, . . . , tr are uniquely determined (n + 1)-ary members of C with
leftmost variable x. Each ti arises from f by setting some variables from y equal to x.

(2) Every (n + 1)-ary member f(x,y) of C with leftmost variable x is of the form

s(· · · s(s(x,y1),y2) · · · ,yk)

where each yi is a permutation of y = (y1, . . . , yn). Hence every (n + 1)-ary member
of C with leftmost variable x is either a semiprojection or the projection x.

Proof: The equation of Lemma 4.1 (1) implies that the following type of reduction can
be performed locally in any composition tree.

s
s

s
s s

s
ss s

s s
s s�

�
�
��

�
�
�
��

�
�
�
��@

@
@
@@
@
@
@
@@

@
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@@=⇒

x y1 yn

yi z1 · · · zn

x y1 yi yn

s

s

s

Figure 3: s(x,ys(yi, z)y′) = s(x,yyiy
′).

Using reductions of this type, any operation f(x,y) ∈ C with leftmost variable x can be
reduced to one of the form displayed in Figure 4.
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Figure 4: A typical operation.
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Here each n-tuple y′i has coordinates from the set {x, y1, . . . , ym} where y = (y1, . . . , ym).
If some y′i has a repetition among its coordinates, then by the semiprojection laws the i-th
application of s can be deleted from the tree. Therefore we may assume that there are no
repetitions among coordinates in any y′i. Observe also that there can be no x in the string y′1,
or by the semiprojection laws we could delete the first (= leftmost = innermost) application
of s from the tree. Lemma 4.1 (2) states that s(s(x,y), z) = s(s(x, z),y), which implies that
in the representation of f depicted in Figure 4 the order of the strings y′1, . . . ,y

′
k relative to

one another is irrelevant. Therefore, our argument that the string y′1 contains no occurrence
of x applies to all other strings, as well. In particular, we can assume that each y′i is a
permutation of one of the length-n subsequences zj of (y1, . . . , ym).

In the special case when m = n this establishes that each y′i is a permutation of y, so f is
of the form described in (2). It is easy to see that in this case f satisfies the semiprojection
laws, so f is either a semiprojection or the projection x, as claimed.

Returning to the general case we will again make use of the fact that in the representation
of f depicted in Figure 4 the order of the strings y′1, . . . ,y

′
k relative to one another is irrele-

vant. Hence we can rearrange them so that the list y′1, . . . ,y
′
k starts with the permutations

of z1 (if any), followed by the permutations of z2 (if any), and so on. Now we get for f the
representation required in (1) as follows. Suppose that among y′1, . . . ,y

′
k exactly the first l

strings are permutations of z1. If l = 0 then let t1 be the projection x. Otherwise let t1 be
the (n + 1)-ary operation determined by the following property: t1(x, z1) is the operation
corresponding to the subtree at the l-th internal node in the tree in Figure 4 representing f .
Pruning this subtree off we can repeat the same construction with z2 in place of z1 to get
t2, etc.

Our next task is to show the uniqueness of t1, t2, . . . , tr. Assume that in C we have

tr(· · · t2(t1(x, z1), z2) · · · , zr) = t′r(· · · t′2(t′1(x, z1), z2) · · · , zr).

We know that the (n + 1)-ary operations t1, t2, . . . tr and t′1, t
′
2, . . . t

′
r are semiprojections.

Furthermore, for each j 6= r the string zj contains a variable distinct from all variables in zr.
Therefore setting each variable not occurring in zr to x and applying the semiprojection laws
we get from the displayed equality that tr(x, zr) = t′r(x, zr). As we saw earlier, the order
of the operations ti(x, zi), resp. t′i(x, zi) in the composition is irrelevant. Therefore we can
move ti(x, zi) and t′i(x, zi) for any fixed i to the outermost position to conclude, as before,
that ti(x, zi) = t′i(x, zi).

The argument in the previous paragraph shows also that if f(x,y) has representation
tr(· · · t2(t1(x, z1), z2) · · · , zr), then each ti(x, zi) arises from f by setting some variables from
y equal to x. This completes the proof of the lemma. 2

This lemma implies that if a clone is generated by an (n+ 1)-ary commutative semipro-
jection s, then every nontrivial subclone has an (n+1)-ary member which is not a projection,
and that member has a special form. This special form shows that, up to a permutation
of variables, every (n + 1)-ary member of the clone is a semiprojection or a projection.
The lemma also shows that to establish minimality of a clone generated by a commutative
semiprojection, it suffices to show that every (n+1)-ary semiprojection in the clone generates
every other (n+ 1)-ary semiprojection.
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These observations encourage us to focus on those (n + 1)-ary members of the clone C
generated by s which satisfy the semiprojection laws. These are the (n+ 1)-ary semiprojec-
tions together with the projection x. The subset of C consisting of all these operations will
be denoted by M . In other words, M is the set of (n + 1)-ary members of C with leftmost
variable x.

Now we define some operations on M . Addition is defined as follows:

(t+ u)(x,y) := u(t(x,y),y).

Lemma 4.1 (2) and Lemma 4.2 (2) imply that this operation is commutative. It is also
associative, since for any (n + 1)-ary operations t(x,y), u(x,y) and v(x,y) in M the sums
t + (u + v) and (t + u) + v both represent v(u(t(x,y),y),y). It is clear that the projection
x is a neutral element with respect to +.

Let Sn denote the group of permutations of {1, . . . , n}. For any n-tuple y = (y1, . . . , yn)
and for any permutation σ ∈ Sn the n-tuple (yσ(1), . . . , yσ(n)) will be denoted by yσ. With
this notation we have (yσ)τ = yστ for all σ, τ ∈ Sn. If σ ∈ Sn and t = t(x,y) is an arbitrary
member of M , then we define the member σt of M as follows:

(σt)(x,y) := t(x,yσ).

It is an immediate consequence of the definitions that

σ(t+ u) = σt + σu and (στ)t = σ(τt)

for all t, u ∈ M and σ, τ ∈ Sn. The straightforward computations verifying these equalities
are as follows:

(σ(t+ u))(x,y) = (t + u)(x,yσ) = u(t(x,yσ),yσ) = (σu)((σt)(x,y),y) = (σt+ σu)(x,y)

and
((στ)t)(x,y) = t(x,yστ ) = t(x, (yσ)τ ) = (τt)(x,yσ) = (σ(τt))(x,y).

Thus M has a natural algebraic structure with an underlying commutative monoid,
and an action of Sn as a group of monoid endomorphisms. We introduce some definitions
regarding such structures.

A semiring is an algebra R = 〈R; ·,+, 1, 0〉 where 〈R; ·, 1〉 and 〈R; +, 0〉 are monoids,
x+ y = y+x, 0 ·x = 0 = x · 0, x · (y+ z) = x · y+x · z, and (x+ y) · z = x · z+ y · z. If M is a
commutative monoid, then the set End(M) of endomorphisms of M has a natural semiring
structure: multiplication of endomorphisms is given by composition, addition is pointwise
addition, 1 is the identity endomorphism, 0 is the zero endomorphism. If S = 〈S; ·, 1〉 is a
monoid, then an S-semimodule is a commutative monoid M = 〈M ; +, 0〉 for which there
is a prescribed homomorphism of S into the multiplicative monoid of the semiring End(M).
If R is the subsemiring of End(M) generated by the image of S, then we may identify the S-
semimodule structure on M with the R-semimodule structure. In this way, it is meaningful
for us to write sums of elements of S: such sums are to be interpreted as elements of End(M).

As we have seen above, for any clone C generated by an (n+1)-ary commutative semipro-
jection the set M of those (n + 1)-ary operations which satisfy the semiprojection laws
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comprise an Sn-semimodule M = 〈M ; +, Sn〉 which we will refer to as the associated
semimodule. We will show that such a clone C is minimal if and only if the associated
semimodule has no proper nontrivial subsemimodule. We will call a semimodule with this
property a minimal semimodule. After showing that a C is minimal if and only if its
associated semimodule is minimal, we classify minimal semimodules and use them to give
an explicit description of minimal commutative clones generated by a semiprojection.

It is easy to see from the defintion that a clone is trivial exactly when all operations are
projections. There are two types of trivial clones: one in which the projections of the same
arity are distinct, which we call the initial clone, and one in which the projections of the
same arity coincide, which we call the terminal clone. The reason for this terminology is
that the initial and terminal clones are initial and terminal objects in the category Clone of
all clones and clone homomorphisms. It is easy to see that a clone is not terminal if and only
if it has a subclone which is isomorphic to the initial clone. Let C denote the full subcategory
of Clone consisting of all nonterminal clones which are generated by a commutative (n+1)-
ary operation satisfying the semiprojection laws. Furthermore, let M denote the category
of all one-generated Sn-semimodules and all semimodule homomorphisms. The relationship
between C andM is described by the next lemma, which is the crucial result of this section.

LEMMA 4.3 There exists a categorical equivalence between C and M, which assigns to
each clone in C its associated semimodule.

Proof: Let C be a clone from C, which is generated by the semiprojection s, and let M
be the associated semimodule of C. By Lemma 4.2 (2) every member of M is of the form
σ1s+ σ2s+ · · ·+ σks for some k and some permutations σi ∈ Sn. Therefore M is generated
by s, and hence belongs to M.

Let C ′ be another clone from C, M′ its associated semimodule, and consider a clone
homomorphism ϕ:C → C ′. If t ∈ M then t is a semiprojection or the projection x. This
property is preserved by any clone homomorphism, therefore tϕ belongs to M′. Thus ϕ re-
stricts to a mapping ϕ−: M→M′. The operations of the associated semimodules are special
clone operations, hence it follows that ϕ− is a homomorphism of Sn-semimodules. Clearly,
the restriction of a composition of homomorphisms equals the composition of the restrictions,
and the restriction of each identity homomorphisms is an identity homomorphism.

This proves that there is a functor F : C → M which assigns to each clone in C its
associated semimodule and to each homomorphism in C its restriction to the respective
associated semimodules. To prove that F is a categorical equivalence it will be sufficient
to verify that F is full, faithful, and representative. The faithfulness of F is easy to see.
Let C,C ′ be clones from C, and let s be a semiprojection generating C. If ϕ, ψ:C → C ′ are
distinct homomorphisms, then ϕ(s) and ψ(s) must be different. But s lies in the semimodule
associated to C, therefore ϕ−, ψ− are also distinct.

Next we prove that F is representative, that is, for each semimodule N from M there
exists a clone C in C with associated semimodule isomorphic to N. We will distinguish the
semimodule operations of N notationally from the operations of a semimodule associated to
a clone by writing x⊕ y and x 7→ σ ◦x for the operations of N instead of x+ y and x 7→ σx.

Let N be any Sn-semimodule from M with generating element s. The clone C we are
going to construct will be defined over the universe U = N ∪ {a1, . . . , an}, where we assume
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that the elements a1, . . . , an are pairwise distinct and the set {a1, . . . , an} is disjoint from N .
The n-tuple (a1, . . . , an) will be denoted by a. The generating element of C, which will also
be denoted by s, is defined as follows:

s(x,y) =

{
x⊕ (π ◦ s) if x ∈ N and y = aπ,
x otherwise.

We define C to be the clone on U generated by s.
It is easy to see that s satisfies the semiprojection laws. To verify that s commutes with

itself, consider an (n+ 1)× (n+ 1) matrix

[
x u
v ∗

]

of elements from U where the entries of the n × n submatrix denoted ∗ are irrelevant.
Applying s first to the columns and then to the resulting row we get s(s(x,v),u′), where u′

is of the form aπ for some π ∈ Sn if and only if u = aπ. Therefore this element is equal to





x⊕ (ρ ◦ s)⊕ (π ◦ s) if x ∈ N , u = aπ, and v = aρ,
x⊕ (π ◦ s) if x ∈ N , u = aπ, and v is not of the form aρ for any ρ ∈ Sn,
x⊕ (ρ ◦ s) if x ∈ N , u is not of the form aπ for any π ∈ Sn, and v = aρ,
x otherwise.

We get the same result if we apply s first to the rows of the matrix and then to the resulting
column. Thus s is a commutative (n + 1)-ary semiprojection, or the projection x. Since C
is not the terminal clone (as |U | > 1), this proves that C belongs to C.

In the same way as we defined the operation s corresponding to the element s ∈ N , we
can define an (n+ 1)-ary semiprojection t = t(x,y) for every element t of N :

t(x,y) =

{
x⊕ (π ◦ t) if x ∈ N and y = aπ,
x otherwise.

Let M denote the set of all these semiprojections. (Later we shall show that M is the universe
of the associated semimodule of C.) It is straightforward to compute that for t, u ∈ N and
σ ∈ Sn the operations corresponding to the elements t⊕ u and σ ◦ t of N are

(t⊕ u)(x,y) =

{
x⊕ π ◦ (t⊕ u) = x⊕ (π ◦ t)⊕ (π ◦ u) if x ∈ N and y = aπ,
x otherwise

= u(t(x,y),y)

and

(σ ◦ t)(x,y) =





x⊕ (π ◦ (σ ◦ t)) = x⊕ ((πσ) ◦ t) if x ∈ N and y = aπ, i.e., if x ∈ N
and yσ = (aπ)σ = aπσ,

x otherwise.

= t(x,yσ).
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Now refer back to Lemma 4.2 (2) to see how the (n + 1)-ary members of the clone C
which satisfy the semiprojection laws can be expressed in terms of the generating operation s.
Using this representation and the last two displayed equalities we get that all these members
of C belong to M . Conversely, since s generates the Sn-semimodule N, therefore every
element t ∈ N has the form t = (σ1 ◦ s)⊕ · · · ⊕ (σk ◦ s) for some k and some permutations
σ1, . . . , σk ∈ Sn. Hence the same equalities imply also that every operation t(x,y) from M
can be expressed by s in the form that occurs in Lemma 4.2 (2). Thus every operation from
M belongs to C and satisfies the semiprojection laws. This implies that M is exactly the
set of those (n + 1)-ary members of C which satisfy the semiprojection laws. By definition
this means that M is the underlying set of the associated semimodule M of C.

It is clear that the mapping N→M, t 7→ t = t(x,y) is a bijection. The last two displayed
equalities show that this mapping is an isomorphism. In fact, in the first equality the left
hand side is the operation corresponding to the sum t ⊕ u in N, while the right hand side
is the operation which, by definition, is t+ u in the associated semimodule M. Similarly, in
the second equality the left hand side is the operation corresponding to the element σ ◦ t in
N, while the right hand side is the operation which is σt in the associated semimodule M.
This completes the proof that the functor F is representative.

Before proving that F is a full functor, we introduce some notation. Let C be a clone
from C, let s be a generating semiprojection, and let M denote the semimodule associated to
C. We will write the members t(x,y) of M in the form x+ t[y]. This will allow us to write
any composite operation um(· · ·u2(u1(x,y1),y2) · · · ,ym) in the form x + u1[y1] + u2[y2] +
· · · + um[ym], or briefly x +

∑m
i=1 ui[yi]. As we have seen, we don’t have to be particular

about associativity or the order of the summands following x. With this notation the unique
representation for the elements of C described in Lemma 4.2 (1) takes the form x+

∑r
i=1 ti[zi]

(ti ∈M).
To prove that the functor F is full let us consider arbitrary clones C,C ′ from C, their

associated semimodules M,M′, and an arbitrary homomorphism χ: M → M′. We have
to verify that χ extends to a homomorphism χ+:C → C ′. We define χ+ as follows: if a
member of C has arity at most n, then it is a projection, so its image under χ+ will be the
corresponding projection in C ′; if g(x,y) is an (m + 1)-ary operation (m ≥ n) from C and
its representation given in Lemma 4.2 (1) is

g(x,y) = x +
r∑

i=1

ti[zi] (ti ∈M), (1)

then the image of g under χ+ is defined to be the operation

χ+(g(x,y)) = x+
r∑

i=1

χ(ti)[zi].

Clearly, χ+ is indeed an extension of χ. Notice also that χ+ has the property that for every
member g of C the operations g and χ+(g) have the same leftmost variable.

Let s be an (n + 1)-ary operation generating C such that s is a semiprojection or the
projection x. Then s ∈M and hence χ(s) is an element of M′. In fact, χ(s) is the generating
element of the subsemimodule χ(M) of M′. It follows from this that every operation in χ(M)
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can be expressed in terms of χ(s). Hence the definition of χ+ yields that for each operation
g ∈ C the operation χ+(g) belongs to the subclone of C ′ generated by χ(s).

Now we prove that χ+ is a clone homomorphism. It suffices to verify that for all m ≥ 0,
for every (m + 1)-ary operation g(x,y) ∈ C with leftmost variable x, and for arbitrary
(m+ 1)-ary operations g1(x,y), . . ., gn(x,y) from C the following equality holds:

χ+(s(g(x,y), g1(x,y), . . . , gn(x,y))) = (χ(s))(χ+(g(x,y)), χ+(g1(x,y)), . . . , χ+(gn(x,y))).
(2)

If m < n, then the operations g, g1, . . . , gn are projections, so (2) trivially holds. From
now on let m ≥ n, and for each i let xi denote the common leftmost variable of gi(x,y)
and χ+(gi(x,y)). As we have seen at the beginning of the proof of Lemma 4.2, a repeated
application of the equation in Lemma 4.1 (1) reduces the composite operation on the left
hand side of (2) to s(g(x,y), x1, . . . , xn). On the right hand side of (2) we can use the
same argument with χ(s) in place of s, since the operations χ+(g), χ+(g1), . . . , χ+(gn) be-
long to the subclone of C ′ generated by χ(s). This reduces the right hand side of (2) to
(χ(s))(χ+(g(x,y)), x1, . . . , xn). Therefore the equality to be proved is

χ+(s(g(x,y), x1, . . . , xn)) = (χ(s))(χ+(g(x,y)), x1, . . . , xn). (3)

If one of the variables x1, . . . , xn is x, which is the leftmost variable of g(x,y), or if these
variables are not pairwise distinct, then both sides of (3) reduce to χ+(g(x,y)), so (3) holds.
Otherwise, there is a zj among the enumeration of the subsequences of y of length n such
that (x1, . . . , xn) coincides with (zj)σ for some permutation σ ∈ Sn. Suppose that the
representation of g(x,y) given in Lemma 4.2 (1) has the form displayed in (1). Then the
operation on the left hand side of (3) is

s(g(x,y), x1, . . . , xn) = (x +
∑r
i=1 ti[zi]) + s[(zj)σ]

= (x +
∑r
i=1 ti[zi]) + σs[zj]

= (x +
∑
i6=j ti[zi]) + (tj + σs)[zj],

while the operation on the right hand side of (3) is

χ(s)(χ+(g(x,y)), x1, . . . , xn) = (x +
∑r
i=1 χ(ti)[zi]) + χ(s)[(zj)σ]

= (x +
∑r
i=1 χ(ti)[zi]) + σχ(s)[zj]

= (x +
∑
i6=j χ(ti)[zi]) + (χ(tj) + σχ(s))[zj].

The latter operation is the image of the preceding one under χ+, because in the semimodule
M′ we have χ(tj + σs) = χ(tj) + σχ(s). This completes the proof of (3). 2

COROLLARY 4.4 Assume that s(x,y) is a commutative semiprojection of arity (n + 1)
and V is the variety of s-representations. Let M be the associated Sn-semimodule. The
clone of V is minimal if and only if M is a minimal semimodule. 2

Now we determine the minimal Sn-semimodules.

LEMMA 4.5 The minimal Sn-semimodules are
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(1) the two-element, lower bounded, join semilattice 〈{0, 1}; +, 0〉 with trivial Sn-action,
and

(2) the irreducible Sn-modules over fields of prime order.

Proof: It is easy to see that the Sn-semimodules of types (1) and (2) are minimal: those
of type (1) because the semimodule has only two elements; those of type (2) because a
subsemimodule of an Sn-module of characteristic greater than zero is in fact a submodule,
and by definition the only proper submodule of an irreducible Sn-module is the trivial one.
Therefore, the nontrivial claim of the lemma is that any minimal Sn-semimodule is of one
of the two types.

Let M be a minimal Sn-semimodule. Let σ1, . . . , σn! be an enumeration of Sn where
σ1 is the identity. Let Ω denote the sum σ1 + · · · + σn! in End(M). In End(M) we have
σΩ = Ω = Ωσ for all σ ∈ Sn; in particular, the additive endomorhism Ω commutes with
every element of Sn. Hence Ω is a semimodule endomorphism of M. By the minimality of
M, it is either the zero map or it is onto. We first consider the case that it is onto.

Choose any σ ∈ Sn and any m ∈ M . Then, since Ω is onto, there is an element n ∈ M
such that m = Ωn. Hence

σm = σ(Ωn) = (σΩ)n = Ωn = m.

This proves that Sn acts trivially on M, so M is simply a minimal monoid with trivial Sn-
action. But we have already determined the minimal monoids in Claim 3.11 of the proof of
Lemma 3.8: they are the two-element semilattice and the cyclic groups of prime order. The
cyclic groups of prime order considered as Sn-semimodules are precisely the (irreducible)
unit representations of Sn over the fields of prime order. Therefore, when Ω is onto, the
structure of M is as described in the lemma.1

Now we assume that Ω is the zero map. For any m ∈M we have

0 = Ωm = σ1m + σ2m+ · · ·+ σn!m = m+ σ2m + · · ·+ σn!m.

This shows that every m ∈ M has an additive inverse −m = σ2m + · · ·+ σn!m. Thus M is
an Sn-module which is minimal as a semimodule. Assume that some nonzero element of M
has finite additive order. Then there is an m0 ∈M whose additive order is p for some prime
p. The map

x 7→ px := x + x+ · · ·+ x︸ ︷︷ ︸
p x’s

is a semimodule endomorphism which annihilates m0, so it annihilates the subsemimodule
generated by m0, which is all of M. Thus, in the case where M has an element of finite
additive order, M is additively a vector space over the p-element field. The minimality of
M as an Sn-(semi)module implies that it is an irreducible representation of Sn over the
p-element field.

1For Ω to be onto in the case when M is a cyclic group of prime order p with trivial Sn-action, then
we must have p > n. But the case where p ≤ n also yields minimal semimodules; they are included in the
argument for the case where Ω is zero.
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The final case to consider is the case where M is an Sn-module where every nonzero
element has infinite additive order; i.e., where the underlying additive group 〈M ; +,−, 0〉
is torsion-free. We will show that this case cannot occur by showing that it leads to the
following contradictory conclusions: (i) 〈M ; +,−, 0〉 is a finitely generated abelian group
and (ii) 〈M ; +,−, 0〉 is a divisible group. That these are contradictory conclusions follows
immediately from the structure theorem for finitely generated abelian groups.

To reach conclusion (i), choose some m1 ∈ M − {0}. The set {σ1m1, σ2m1, . . . , σn!m1}
is closed under the action of Sn, so the additive subgroup of M that it generates is a
subsemimodule of M. Since the subsemimodule contains m1 6= 0, it is all of M. Thus, M is
finitely generated as a group.

To reach conclusion (ii), choose any m2 ∈M − {0} and any positive integer n. We must
show that the equation nx = m2 has a solution in M. The map x 7→ nx is an endomorphism
of the module M which is one-to-one, since 〈M ; +,−, 0〉 is torsion-free. Therefore it is onto,
by the minimality of M. This implies the existence of a solution to nx = m2, and so the
proof is finished. 2

Let s(x,y) be a commutative semiprojection which generates a minimal clone. If the
associated minimal semimodule is a two-element semilattice with trivial Sn-action, then we
call any s-representation a right semilattice. This does not conflict with our previous use
of the term. If the associated minimal semimodule is an irreducible Sn-module, then we call
any s-representation a right irreducible Sn-module.

Combining Corollary 4.4 and Lemma 4.5, we get the following list of all minimal clones
which are generated by a commutative semiprojection.

THEOREM 4.6 Let V be the variety of s-representations, where s is a commutative
semiprojection. If V has a minimal clone, then V is one of the following varieties:

(1) The variety of right semilattices.

(2) A variety of right irreducible Sn-modules over a field of prime order. 2

We know from Lemma 4.3 that a minimal clone generated by an (n+1)-ary commutative
semiprojection is determined up to isomorphism by the isomorphism type of its associated
semimodule. The result of Lemma 4.5 shows that every minimal Sn-semimodule is simple.
Thus, any commutative clone generated by a semiprojection which satisfies relations implying
that the associated semimodule is minimal must be a minimal or trivial clone. This means
that

• the idempotent and commutative laws,

• the semiprojection laws, and

• any set of relations which constitute a presentation of the associated (minimal) semi-
module

constitute a full set of defining relations for any minimal commutative clone generated by a
semiprojection.
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Each of the varieties described in Theorem 4.6 is generated by its free algebra on n + 1
generators, where n+ 1 is the arity of s. This free algebra is finite, in fact it has cardinality
(n+ 1) · |M | where M is the associated semimodule, so each clone listed has a finite faithful
representation.

In light of Lemma 2.1, Theorems 2.2, 2.3, 3.20 and 4.6 constitute a description of all
commutative minimal clones.
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