
COLLAPSING PERMUTATION GROUPS
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Abstract. It is shown in [3] that any nonregular quasiprimitive permutation
group is collapsing. In this paper we describe a wider class of collapsing per-
mutation groups.

Dedicated to Ivo Rosenberg on his 65th birthday

1. Introduction

Let A = (A;F ) be a finite algebra. The unary part of the clone of A, M = Clo1 A,
is a transformation monoid on the set A. In the lattice of clones on A, the collection
of clones whose unary part is M forms an interval. It has long been known that if
|A| ≥ 3 and M consists of all the constant operations and the identity function, then
this interval has only one element. In other words, there is only one algebra up to
term equivalence whose base set is A and whose unary term operations are exactly
the constant operations together with the identity function: it is the unary algebra
(A;M).

This result is extended by P. P. Pálfy in [2]. Pálfy proves that if A = (A;F ) is
an algebra with |A| ≥ 3 and the transformation monoid M = Clo1 A consists of all
constant operations on A together with a group of permutations, then (A;F ) is term
equivalent to the unary algebra (A;M) or to a vector space. Thus, if M consists of
all constant operations together with a group of permutations where the group is not
the affine group of a vector space on A, then the only algebra up to term equivalence
whose base set is A and whose unary term operations are exactly the operations in
M is (A;M).

These results motivate the following definition (cf. [3]): a transformation monoid
M on A is collapsing if the only algebra up to term equivalence whose base set is A
and whose unary term operations are exactly the operations in M is (A;M). In this
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paper we will describe new results about collapsing monoids that are permutation
groups.

Let Γ be a permutation group on A. In [3] it is shown that if Γ is a nonregular
quasiprimitive group, then it is collapsing. The requirement that Γ is nonregular
means that some γ ∈ Γ \ {1} has a fixed point. That Γ is quasiprimitive means
that every nontrivial normal subgroup of Γ acts transitively on A. This is equivalent
to the condition that for any nontrivial normal subgroup N of Γ it is the case that
NΓa = Γ when Γa is a 1-point stabilizer. In [5] the reader will find an O’Nan–Scott
type theorem classifying quasiprimitive groups.

In this paper we describe a wider class of collapsing permutations groups.

Theorem 1.1. Let Γ be a nonregular transitive permutation group acting on a finite
set A. If for every normal subgroup N of Γ either NΓa = Γ or N ∩ Γa = {id}, then
Γ is collapsing.

The condition in Theorem 1.1 says that every normal subgroup of Γ acts transitively
or semiregularly on A.

In the last section of the paper we describe some examples of collapsing permutation
groups which do not satisfy the condition described in Theorem 1.1. The arguments
we use to show that these examples are collapsing suggest that a full characterization
of collapsing permutation groups will require a study of ‘geometries’ associated to
finite groups.

2. G-algebras

Let G be a group. An algebra G is called a G-algebra if the universe of G is G
and Clo1 G coincides with the group LG of left translations of G. It is easy to see
that an algebra G with universe G is a G-algebra if and only if the following two
conditions hold for G:

(1) all permutations in LG are term operations of G, and
(2) all permutations in the group RG of right translations of G are automorphisms

of G.

An operation f defined on the set G will be called a G-operation if all permutations
in RG are automorphisms of the algebra (G; f). Clearly, an operation is a term
operation of a G-algebra exactly when it is a G-operation.

It follows from the definition that every (n+ 1)-ary G-operation f(x, y1, . . . , yn) is

determined by the associated n-ary operation f̃(y1, . . . , yn) = f(1, y1, . . . , yn) where
1 is the unit element of the group G; namely, for any x ∈ G we have

f(x, y1, . . . , yn) = f(1 · x, (y1x
−1) · x, . . . , (ynx−1) · x)

= f(1, y1x
−1, . . . , ynx

−1) · x
= f̃(y1x

−1, . . . , ynx
−1) · x.
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Conversely, every n-ary operation f̃(y1, . . . , yn) on G gives rise to an (n + 1)-ary
G-operation f(x, y1, . . . , yn) via the definition

(2.1) f(x, y1, . . . , yn) = f̃(y1x
−1, . . . , ynx

−1) · x.
With this definition, f̃(y1, . . . , yn) agrees with f(1, y1, . . . , yn).

We will now explain how the claim in Theorem 1.1 can be translated into a claim
about G-algebras. If G is a group and H is a subgroup of G, then αH will denote the
equivalence relation on G whose blocks are the left cosets gH (g ∈ G) of H. It is easy
to see that the congruences of the unary algebra (G;LG) are exactly the equivalence
relations αH where H runs over all subgroups of LG. For each subgroup H of G the
quotient algebra (G;LG)/αH is (G/αH ;LG[H]) where LG[H] denotes the group of
left multiplications by elements of G, as they act on the left cosets of H. Clearly,
LG[H] is a transitive permutation group on G/αH ; moreover, the permutation group
LG[H] is regular if and only if H is a normal subgroup of G. It is also well known
and easy to check that the natural group homomorphism LG → LG[H] is one-to-one
if and only if H contains no nontrivial normal subgroup of G; or equivalently, if and
only if the intersection of the conjugates Hg = g−1Hg of H is the one-element group.
In this case the subgroup H of G will be called core-free.

It is well known that every transitive permutation group can be represented in the
form LG[H] where G is a group and H is a core-free subgroup of G. Therefore every
algebra whose unary term operations form a transitive permutation group can be
thought of as an algebra Q which is defined on the set G/αH and satisfies Clo1 Q =
LG[H] for such a pair G and H. The next lemma describes the relationship between
these algebras Q and those G-algebras which admit αH as a congruence.

Lemma 2.1. Let G be a group and let H be a core-free subgroup of G.

(1) For every G-algebra G which admits αH as a congruence the quotient algebra
G/αH generates the same variety as G. Consequently the natural homomor-
phism Clo G → Clo (G/αH) between their clones is an isomorphism. We
have Clo1 G = LG and Clo1 (G/αH) = LG[H].

(2) Conversely, if Q is an algebra with universe G/αH such that Clo1 Q = LG[H]
then there exists a G-algebra G such that Q = G/αH .

(3) The mapping

Clo G 7→ Clo (G/αH)

defines a lattice isomorphism between the clones of those G-algebras which
admit αH as a congruence, and the clones of those algebras Q (on G/αH)
which satisfy Clo1 Q = LG[H].

Proof. (1) We start the proof with a claim which, for later use, will be stated for
arbitrary subgroups of G, not only for core-free subgroups.
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Claim 2.2. Let G be a group, let H be an arbitrary subgroup of G, and let N denote
the intersection of the conjugates of H. For any G-algebra G which admits αH as a
congruence, αN is a congruence of G, and G/αN is isomorphic to a subdirect power
of G/αH .

To prove the claim let G be a G-algebra which admits αH as a congruence. Since
the elements of the permutation group RG are automorphisms of A, therefore αHg

is a congruence of A for every conjugate H
g

= g−1Hg of H. The intersection of all
these congruences is obviously αN , and the quotients G/αHg are all isomorphic to
G/αH . This concludes the proof of the claim.

The statement in the first sentence of (1) is an immediate consequence of this
claim. The rest of (1) is clear.

To verify (2) let us consider an algebra Q with Clo1 Q = LG[H]. There is a 1-
generated free algebra F in the variety generated by Q that has base set Clo1 Q =
LG[H], and the operations are defined in the obvious way. Now one can see that this
free algebra is an LG[H]-algebra, and the kernel of the natural homomorphism F→ Q
is αU where U is the stabilizer subgroup of H in LG[H]. Under the assumptions of
the lemma the group homomorphism G → LG[H] assigning to each g ∈ G the
permutation ‘multiplication by g’ (as it acts on the left cosets ofH) is an isomorphism;
furthermore, it is clear that under this isomorphism the stabilizer U corresponds
exactly to the subgroup H of G. Therefore, via renaming the elements of F we can
get a G-algebra G as required in (2).

In (3) the only nontrivial claim is that the mapping described is a bijection. (2)
shows that it is surjective. To prove that it is also injective let Q be an algebra (on
G/αH) which satisfies Clo1 Q = LG[H], and let G be a G-algebra which admits αH
as a congruence and satisfies G/αH = Q. We have seen in (1) that G must generate
the same variety as Q. However, since G is a G-algebra, it is the one-generated free
algebra in the variety it generates. Therefore G is uniquely determined by Q. �

For our purposes the following special case of Lemma 2.1 will be useful.

Corollary 2.3. Let G be a group, and let H be a core-free subgroup of G. The
permutation group LG[H] is collapsing if and only if (G;LG) is the only G-algebra,
up to term equivalence, which admits αH as a congruence.

For a group G and a nontrivial subgroup H in G we will say that 〈G,H〉 is a
collapsing pair if (G;LG) is the only G-algebra, up to term equivalence, which
admits αH as a congruence.

3. Proof of Theorem 1.1

From now on we will focus on finite groups. Since every transitive permutation
group on a finite set can be represented in the form LG[H] for some finite group G and
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some core-free subgroup H of G, Corollary 2.3 shows that Theorem 1.1 is equivalent
to the following statement.

Theorem 3.1. Let G be a finite group, and let H be a nontrivial proper subgroup of
G. If for every normal subgroup N of G either NH = G or N ∩H = {1}, then the
pair 〈G,H〉 is collapsing.

Notice that the assumptions of the theorem that NH = G or N ∩ H = {1} for
every normal subgroup N of G imply, in particular, that H is a core-free subgroup
of G. Thus, by Corollary 2.3, it is clear that Theorem 3.1 is the exact translation of
Theorem 1.1 into a statement about G-algebras.

Before showing that the condition in Theorem 3.1 is sufficient for a pair 〈G,H〉
to be collapsing, we state and prove a proposition that provides some easy necessary
conditions.

Proposition 3.2. Let G be a finite group, and let H be a nontrivial proper subgroup
of G. If the pair 〈G,H〉 is collapsing, then

(1) H is a core-free subgroup of G;
(2) H is contained in no proper normal subgroup of G.

Proof. Recall from Section 2 that any G-operation f(x, y1, . . . , yn) is uniquely deter-

mined by the associated operation f̃(y1, . . . , yn) = f(1, y1, . . . , yn) where 1 is the unit

element of the group G, and conversely, every operation f̃(y1, . . . , yn) on G arises in
this way from a G-operation f(x, y1, . . . , yn). The exact relationship between f and

f̃ is shown by equality (2.1) in Section 2.

Claim 3.3. Let f(x, y1, . . . , yn) be an arbitrary G-operation and let f̃(y1, . . . , yn) be
the corresponding polynomial operation. Then

• f is idempotent if and only if f̃(1, . . . , 1) = 1;

• f is a projection if and only if f̃ is either a projection or the constant function
with value 1; and

• The algebra (G; f) admits αH as a congruence if and only if f̃ preserves all
equivalence relations αHg (g ∈ G).

The first two items are obvious from (2.1) and from the fact that if (x, y1, . . . , yn)
runs over all (n+ 1)-tuples in G, then (y1x

−1, . . . , ynx
−1) runs over all n-tuples in G.

To prove the last item assume first that (G; f) admits αH as a congruence. Since
the permutations in RG are automorphisms of (G; f), therefore αHg is a congruence

of (G; f) for every conjugate Hg (g ∈ G) of H. But f̃ is a polynomial operation of
(G; f), hence it preserves all αHg .

Conversely, assume that f̃ preserves all equivalence relations αHg (g ∈ G). Let
(a, b1, . . . , bn) and (c, d1, . . . , dn) be (n + 1)-tuples from G which are αH-related co-
ordinatewise; that is, we have aH = cH and biH = diH for all i. We have to verify
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that f(a, b1, . . . , bn) and f(c, d1, . . . , dn) are also αH -related, that is,

f(a, b1, . . . , bn)H = f(c, d1, . . . , dn)H.

The assumptions imply that bia
−1aH = dic

−1cH = dic
−1aH for all i, or equivalently,

(bia
−1, dic

−1) ∈ αHa−1 for all i. Since f̃ preserves αHa−1 , we conclude that

f̃(b1a
−1, . . . , bna

−1)aH = f̃(d1c
−1, . . . , dnc

−1)aH = f̃(d1c
−1, . . . , dnc

−1)cH.

(2.1) shows that this equality implies the previous displayed equality. This completes
the proof of Claim 3.3.

We will prove the claims in Proposition 3.2 as follows: if condition (1) or (2) fails
for G and H, we will exhibit an idempotent G-operation f which is distinct from the
projections and admits αH as a congruence. This will complete the proof because
for such an f the algebra (G;LG, f) is a G-algebra which is not term equivalent to
the unary algebra (G;LG), but which admits αH as a congruence. We will construct

f via f̃ . By Claim 3.3 the properties required for f̃ are that (i) f̃(1, . . . , 1) = 1, (ii)

f̃ is distinct from the projections and from the constant function with value 1, and

(iii) f̃ preserves all equivalence relations αHg (g ∈ G).
Assume first that (1) fails, that is, G has a nontrivial normal subgroup M such

that M ⊆ H. Let f̃ be any function G → M such that f̃(1) = 1 and f̃ is not the
constant function with value 1. Clearly, such a function exists and satisfies (i) and
(ii). To see that (iii) also holds, observe that M ⊆ Hg for all g ∈ G, therefore the

range of f̃ is contained in a single block of each equivalence relation αHg .
Now assume that (2) fails, that is, G has a proper normal subgroup N such that

H ⊆ N . Clearly Hg ⊆ N for all g ∈ G. Let us select an element from each coset of
N in such a way that the element 1 is chosen from N . For each z ∈ G let ẑ denote

the element selected from the coset zN . Define a binary operation f̃ on G as follows:

f̃(y, z) =

{
ẑ if y ∈ N ,
1 if y /∈ N .

It is straightforward to check that f̃ satisfies (i) and (ii). Since f̃(y, z) = f̃(y′, z′)

whenever yN = y′N and zN = z′N it follows also that f̃ satisfies (iii). �

From now on, when we investigate whether a pair 〈G,H〉, where G is a finite
group and H is a nontrivial subgroup of G, is collapsing we will always assume that
conditions (1) and (2) from Proposition 3.2 are met. The following theorem is the
main result of this section. This theorem gives a rather technical necessary and suffi-
cient condition for 〈G,H〉 to be collapsing. However, the condition is strong enough
to imply Theorem 3.1 (and hence Theorem 1.1). It will also be useful in the next
section where we consider some examples to explore the gap between the necessary
conditions in Proposition 3.2 and the sufficient condition provided by Theorem 3.1.
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Theorem 3.4. Let G be a finite group and let H be a nontrivial core-free subgroup
of G such that H is contained in no proper normal subgroup of G. The following
conditions are equivalent.

(i) 〈G,H〉 is a collapsing pair.
(ii) For every normal subgroup N of G such that NH 6= G and N ∩H 6= {1} the

constant function with value 1 is the only function f̃ : G → N which has the
following properties:

(a) f̃(1) = 1,

(b) f̃ preserves all equivalence relations αHg (g ∈ G).

Proof. Suppose that G and H satisfy the assumptions of the theorem. If condition
(ii) fails, then for some nontrivial proper normal subgroup N of G there exists a

nonconstant function f̃ : G → N with properties (a) and (b). Claim 3.3 shows that

the binary G-operation f corresponding to f̃ is idempotent, but is not a projection,
and admits αH as a congruence. Thus (G;LG, f) is a G-algebra which is not term
equivalent to the unary algebra (G;LG), but it admits αH as a congruence. This
proves that (i) fails.

Now suppose that condition (ii) holds for G and H, and in order to prove (i)
consider an arbitrary G-algebra G which admits αH as a congruence. Our goal is
to show that G is essentially unary, and hence term equivalent to the unary algebra
(G;LG).

We know that every congruence of G is a congruence of the reduct (G;LG) of G as
well, therefore it is of the form αH for some subgroup H of G. Select H so that αH
is a maximal congruence of G above αH . Thus the quotient algebra G/αH is simple;
furthermore, Clo1 (G/αH) = LG[H]. Our assumptions on H ensure that H is not a
normal subgroup of G, hence the permutation group LG[H] is not regular. Therefore
we are in a position to apply Lemma 10 from [3] (see [8] for a second proof):

Lemma 3.5. Let Γ be a transitive permutation group acting on a finite set A, and
assume that Γ is not regular. If A is a simple algebra such that Clo1 A = Γ, then A
is essentially unary, hence A must be term equivalent to (A; Γ).

So we get from this lemma that the algebra G/αH is essentially unary. Let N
denote the intersection of all conjugates of H; N is obviously a normal subgroup of
G. Since both N and H are contained in H, therefore NH 6= G. By Claim 2.2 the
algebra G/αN is isomorphic to a subdirect power of G/αH . Hence G/αN is also
essentially unary.

Next we want to show that every binary idempotent term operation f(x, y) of G is
a projection. Since A/αN is essentially unary, therefore f is a projection modulo αN .
We may assume without loss of generality that f projects onto the variable x modulo
αN . Hence f(1, y) is αN -related to 1 for all y ∈ G. In other words, this means that

the operation f̃(y) = f(1, y) corresponding to f has range contained in N . Since
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αH is a congruence of G, we know from Claim 3.3 that f̃ preserves all equivalence

relations αHg (g ∈ G). The idempotence of f yields that f̃(1) = 1.

If N ∩ H 6= {1}, then the assumption (ii) combined with the properties of f̃

established so far imply that f̃ must be the constant function with value 1. The
same conclusion is true also in the case when N ∩ H = {1}. Indeed, this equality
implies that N ∩ Hg = (N ∩ H)g = {1} for all g ∈ G. If yHg = zHg for some

elements y, z, g ∈ G, then f̃(y)Hg = f̃(z)Hg, as f̃ preserves αHg . We have also

f̃(y), f̃(z) ∈ N , as f̃ maps into N . Thus f̃(y)−1f̃(z) ∈ N ∩ Hg = {1}, whence

f̃(y) = f̃(z). This means that f̃ is constant on all blocks of each equivalence relation

αHg . Consequently f̃ is constant on all blocks of the smallest equivalence relation
containing all αHg (g ∈ G), which is the relation αM where M is the least subgroup of
G containing all Hg (g ∈ G). This subgroup M is normal, therefore our assumption

on H yields that M = G. Hence f̃ is the constant function with value 1, as claimed.

Thus, in both cases f̃ is the constant function with value 1. Using Claim 3.3 again
we get that f is projection onto its variable x. Since f was an arbitrary binary
idempotent term operation of G, this shows that G has no binary idempotent term
operations other than the projections.

To finish the proof of Theorem 3.4 it suffices to verify the claim below, since the
assumptions of the theorem exclude the possibility that the group G is abelian.

Claim 3.6. If G is a finite G-algebra and G has no binary idempotent term oper-
ations other than the projections, then G is term equivalent to one of the following
algebras:

(1) (G;LG),
(2) (G; xy−1z, LG) where G an elementary abelian 2-group,
(3) (G;m,LG) where |G| = 2 and m is a majority operation on G.

Let G be a G-algebra. First we show that every unary polynomial operation of

G is of the form gf̃ for some g ∈ G and some binary idempotent term operation f
of G. Let p(x) be a unary polynomial operation of G, and consider the polynomial
operation p(x) = g−1p(x) where g = p(1). Clearly p(1) = 1. Furthermore, p(x) =
t(g1, . . . , gn−1, x) for some n, some n-ary term operation t of G, and some elements
g1, . . . , gn−1 ∈ G. Hence for the binary term operation f(x, y) = t(g1x, . . . , gn−1x, y)

we have p(x) = f(1, x) = f̃(x) and f̃(1) = p(1) = 1. Thus, p(x) = gp(x) = gf̃(x) as

claimed, and the equality f̃(1) = 1 ensures by Claim 3.3 that f is idempotent. This

completes the proof that any unary polynomial of a G-algebra G has the form gf̃ for
some g ∈ G and some binary idempotent term operation f of G.

Now assume that G is a finite G-algebra in which every binary idempotent term
operation is a projection. The claim just proven shows that any unary polynomial of
G is a permutation or a constant. So, using Pálfy’s Theorem from [2], we get that
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either G has two elements, or G is essentially unary, or G is polynomially equivalent
to a vector space. The conclusions of Claim 3.6 can be verified for the case |G| = 2
by consulting Post’s classification [4] of all clones on a two-element set. Therefore
from now on we assume that |G| ≥ 3. Since G is a G-algebra, if it is essentially
unary, then it is term equivalent to (G;LG).

Assume that G is polynomially equivalent to a vector space. In this case every
idempotent term operation of the vector space is a term operation of G (see Exercise
2.8 and Proposition 2.6 in [7]). In particular, every operation cx + (1 − c)y with
c in the base field is a term operation of G. Since G has no binary idempotent
term operations other than the projections, we see that the base field must be the
two-element field. Since G is a G-algebra, Proposition 2.9 in [7] shows also that G
must be term equivalent to the algebra whose basic operations are the vector space
operation x−y+z and all translations. In this case G must be an elementary abelian
2-group and LG must be the group of all translations of the vector space. Thus G is
term equivalent to the algebra in (2).

This completes the proof of Claim 3.6 and hence the proof of Theorem 3.4. �

We note that Claim 3.6 could have been replaced by other arguments to finish
the proof of (ii)⇒(i) in Theorem 3.4. Once it is established that G has no binary
idempotent term operations other than the projections, one could apply Rosenberg’s
classification of minimal clones in [6] to prove that G is term equivalent to one of
the algebras in 3.6 (1), (2), or (3), or one could cite Grabowski’s theorem in [1] to
directly conclude that 〈G,H〉 is collapsing.

Proof of Theorem 3.1. If the assumptions of Theorem 3.1 hold for a finite group G
and its subgroup H, then the collection of normal subgroups N for which the condi-
tion in (ii) of Theorem 3.4 has to be verified is vacuous. Therefore (ii) automatically
holds, and hence the pair 〈G,H〉 is collapsing. �

4. Examples

In this section we will look at some finite groups G which have subgroups H such
that the sufficient condition in Theorem 3.1 fails in the simplest possible way: G has
exactly one normal subgroup N with the properties NH 6= G and N ∩H 6= {1}.

The smallest group that can be chosen for G is S4, the symmetric group on four
letters. Within S4, H can be taken to be one of its four-element non-normal sub-
groups. Then, for any such H and for the four-element normal subgroup N of S4 (the
Klein group), we have |NH| = 8 < |S4| and |N ∩H| = 2. Since S4 has no nontrivial
proper normal subgroups other than N and the alternating group, it is clear that N
is the only normal subgroup of G whose intersection with H is nontrivial, and whose
join with H is a proper subgroup of G.
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We will prove that these subgroups H in S4 yield non-collapsing pairs, showing
that if the hypotheses in Theorem 3.1 are not met, then the conclusion may not hold.

Proposition 4.1. If H is a four-element subgroup of S4 which is not normal, then
the pair 〈S4, H〉 is non-collapsing.

Proof. Up to automorphism, there are two possibilities for H:

• H is generated by (1 2 3 4), or
• H = {id, (1 3), (2 4), (1 3)(2 4)}.

In both of these cases NH is the usual permutation representation of the dihedral
group D4, and N ∩ H = {id, (1 3)(2 4)}. In view of Theorem 3.4 the proof will

be done if we exhibit a nonconstant function f̃ : S4 → N which satisfies conditions
(a)–(b) in that theorem.

The function we construct will be constant on each of the six cosets of N . To
visualize the construction we introduce an edge-colored graph G. The vertices of G
will be the cosets of N written as aibjN with a = (1 2 3), b = (1 3), 0 ≤ i ≤ 2,
0 ≤ j ≤ 1. The edges between vertices will be colored by conjugates of H. The edges
are defined as follows: two cosets yN, y′N are connected by an edge with color Hg

(g ∈ S4) if

(4.1) there exist elements s ∈ yN and s′ ∈ y′N such that (s, s′) ∈ αHg .

In other words, (4.1) requires that
(
(yN)−1y′N

)
∩Hg 6= ∅. This condition is equivalent

to (Ny−1y′N) ∩ Hg 6= ∅, which in turn is equivalent to y−1y′ ∈ NHgN = NHg =
HgN . Thus, two vertices yN, y′N are connected by an edge with color Hg (g ∈ S4)
if and only if the cosets yN, y′N are contained in the same left coset of HgN . The
subgroup H has three distinct conjugates in S4, namely H, Ha, and Ha2

, therefore G
is the graph depicted in Figure 1, where thick, normal, and dotted edges correspond
to edges with color H, Ha, and Ha2

, respectively. Note that G has loops of each color
at all its vertices which are not shown in Figure 1.
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bN abN a2bN

Figure 1: The graph G (loops are not indicated)

We can think of the partitions αHg (g ∈ S4) of the group as a ‘geometry’ where the
points are the elements of S4 and the lines are the blocks of these partitions, i.e., the
lines are the left cosets of Hg (g ∈ S4). The graph G describes this geometry modulo
N . The graph GN in Figure 2 shows this geometry restricted to N : the vertices are
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the elements id, u = (1 2)(3 4), v = (1 3)(2 4), w = (1 4)(2 3) of N , and there is an
edge with color Hg (g ∈ S4) between two vertices exactly when they are αHg -related.
Again, there are loops of each color at all vertices, which are not shown in Figure 2.
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Figure 2: The graph GN (loops are not indicated)

It is clear from the definitions of the graphs G and GN that a function f̃ : S4 → N
which is constant on each coset of N has property (b) in Theorem 3.4 if and only
if it is a color-preserving function from G to GN . Such a function can be viewed as
a color-preserving labelling of the vertices of G with the vertices of GN . Thus, the

labelling shown in Figure 3 provides a nonconstant function f̃ which completes the
proof.
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Figure 3: Color-preserving labelling of G
�

Next we will look at a class of groups constructed from finite fields. Let m be a
prime number of the form m = (pq−1)/(p−1) where p is prime. It is straightforward
to verify that q must be prime and gcd(p− 1, q) = gcd(pj − 1, m) = 1 for 0 < j < q.
(There are many choices of p and q which make m prime. For example, Mersenne
primes m arise for p = 2. A computer search shows that m is prime for many other
values of p and q.)

We define a group G whose elements are permutations of the Galois field GF(pq):

(4.2) G = {cxpj + d : c, d ∈ GF(pq), cm = 1, 0 ≤ j < q}.
The following subgroups of G will be of importance:

H = {xpj + n : 0 ≤ j < q, n ∈ GF(p)},(4.3)

N = {x+ d : d ∈ GF(pq)}.
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Using the fact that m is prime one can verify that G has only two nontrivial proper
normal subgroups: N and

A = {cx+ d : c, d ∈ GF(pq), cm = 1}.
Therefore N is the only normal subgroup of G whose intersection with H is nontrivial,
and whose join with H is a proper subgroup of G.

Notice that m = 3 is the least one among the primes we are considering, and it
arises for p = q = 2. In this case the group G in (4.2) is isomorphic to S4, and the
subgroup H in (4.3) corresponds to the noncyclic four-element subgroup of S4 that
we considered earlier, while N corresponds to the Klein group and A corresponds to
A4. Thus, S4 is the smallest member of the family we are considering. However, we
will see that S4 is an exceptional member of the family: all groups with m > 3 yield
collapsing pairs.

Proposition 4.2. If m > 3 is a prime of the form m = (pq − 1)/(p − 1) where
p is prime, then for the groups G,H defined in (4.2) and (4.3) the pair 〈G,H〉 is
collapsing.

Proof. By Theorem 3.4 we have to prove that the constant function with value 1 is

the only function f̃ : G→ N which satisfies conditions (a)–(b) in that theorem. The

crucial condition is (b), so we will analyze what it means for a function f̃ : G → N

to satisfy this condition. First we will focus on the behavior of f̃ when f̃ is restricted
to the subgroup

G0 = {cxpj : c ∈ GF(pq), cm = 1, 0 ≤ j < q},
which is the stabilizer of the element 0 ∈ GF(pq) in G. To this end we will study how
the geometry of left cosets of conjugates of H restricts to G0 and to N .

To describe these geometries in detail we need some notation. Let

H0 = G0 ∩H = {xpj : 0 ≤ j < q} and A0 = {cx : c ∈ GF(pq), cm = 1},
that is, H0 and A0 are the stabilizers of 0 in H and A, respectively. Clearly, A0 is
a normal subgroup of G0 and G0 = A0H0. Since A0 ∩H0 = {1}, G0 is a semidirect
product of A0 and H0.

Let a denote a generating element of the cyclic group A0, and let b = xp, which
is a generating element of the cyclic group H0. Further, let 1 denote the identity
permutation. Then {a, b} is a generating set of G0, and

(4.4) am = 1, bq = 1, bjai = aip
j

bj for all 0 ≤ i < m, 0 ≤ j < q.

Every element of G0 can be written uniquely in the form aibj for some 0 ≤ i < m,
0 ≤ j < q.

Claim 4.3. H ∩Hak = {1} if 0 < k < m. Hence the conjugates Hak (0 ≤ k < m) of
H pairwise intersect trivially.
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The second statement is an easy consequence of the first one. To prove the first
statement let 0 < k < m. The permutation ak is of the form cx for some element
c ∈ GF(pq) with cm = 1, c 6= 1. Since every permutation in H has the form xp

j
+ n

where 0 ≤ j < q and n ∈ GF(p), it follows that every permutation in Hak has the
form

c−1((cx)p
j

+ n) = cp
j−1xp

j

+ c−1n

for some 0 ≤ j < q and n ∈ GF(p). Thus every member of H ∩ Hak has the form

cp
j−1xp

j
+ c−1n with cp

j−1 = 1 and c−1n ∈ GF(p). But cp
j−1 6= 1 unless j = 0,

because otherwise we contradict cm = 1, c 6= 1, or the fact that gcd(pj − 1, m) = 1
for 0 < j < q. Thus j = 0. This also shows that c /∈ GF(p), since otherwise c would
satisfy cp−1 = 1. Thus, since n, c−1n ∈ GF(p), we conclude that n = 0. This shows

that every permutation in H ∩Hak (0 < k < m) has the form

cp
j−1xp

j

+ c−1n = cp
0−1xp

0

+ 0 = x,

which is the identity permutation. This completes the proof of the claim.

Now we will look at how the left cosets of Hak (0 ≤ k < m) restrict to G0. We will
think of this structure as a geometry G0 on G0. The points of the geometry are the
elements aibj (0 ≤ i < m, 0 ≤ j < q) arranged in a q ×m rectangle so that the i-th
column is the left coset aiH0 of H0 and the j-th row is the right coset A0b

j of A0.
The lines of the geometry are the restrictions of the left cosets of Hak (0 ≤ k < m)

to G0, and each line is colored by the associated group Hak . In other words, the lines
with color Hak are the sets of the form

(4.5) G0 ∩ yHak = y(G0 ∩Hak) = y(G0 ∩H)a
k

= yHak

0 with y ∈ G0.

Some basic properties of the geometry G0 are summarized in Claim 4.4 below.

Claim 4.4. The geometry G0 has the following properties:

(G1) Every point is incident to a line of each color.
(G2) Two distinct lines of the same color have no points in common.
(G3) Two lines of different colors have at most one point in common.
(G4) Every line contains exactly q points, one point from each row.
(G5) Any two points which are not in the same row lie on exactly one line.

(G1) and (G2) are obvious, since the cosets of any Hak

0 partition G0. To prove (G3)
let us consider two lines of different colors which have a point y ∈ G0 in common.
Using the description (4.5) of the lines we see that the two lines are of the form

L = G0 ∩ yHak and L′ = G0 ∩ yHak
′

for some 0 ≤ k < k′ < m. Thus

L ∩ L′ = G0 ∩ (yHak ∩ yHak
′
) = G0 ∩ y(Hak ∩Hak

′
) = G0 ∩ {y} = {y}

by Claim 4.3.
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(G4) follows from the facts that the lines are the left cosets of the subgroups Hak

0

in G0 (by (4.5)), the rows are the right cosets of A0 in G0, G0 is a semidirect product
of the normal subgroup A0 by H0, and |H0| = q.

To show (G5) pick points P and Q from different rows. Suppose P is from row
A0b

s and Q is from row A0b
t and s 6= t. Then P−1Q belongs to b−sA0b

t = A0b
t−s.

Since s 6= t, P−1Q has the form P−1Q = aibj for some 0 ≤ i < m and 0 < j < q. By
the description (4.5) of the lines, P and Q belong to a line with color Hak exactly

when P−1Q ∈ Hak

0 . Using the fact that

Hak

0 = {ak(pj−1)bj : 0 ≤ j < q}, 0 ≤ k < m,

which follows from (4.4), we see that P−1Q = aibj ∈ Hak

0 holds if and only if

(4.6) k(pj − 1) ≡ i (mod m).

Since gcd(pj − 1, m) = 1 holds for 0 < j < q, therefore the congruence (4.6) has a
unique solution for k. Thus P and Q lie on a unique line. This completes the proof
of Claim 4.4.

We will also need the geometry GN that arises by restricting the geometry of left
cosets of Hak (0 ≤ k < m) to N . The points of this geometry are the elements of N .

The lines of the geometry are the restrictions of the left cosets of Hak (0 ≤ k < m)

to N , and each line is colored by the associated group Hak . In other words, the lines
with color Hak are the sets of the form

(4.7) N ∩ uHak = u(N ∩Hak) = u(N ∩H)a
k

with u ∈ N.
Claim 4.5. GN is the q-dimensional affine geometry over the field GF(p). In partic-
ular, the following conditions hold:

(N1) Every point is incident to a line of each color.
(N2) Two distinct lines of the same color have no points in common.
(N3) Two lines of different colors have at most one point in common.
(N4) Every line contains exactly p points.
(N5) Any two distinct points lie on exactly one line.

Clearly, N is an elementary abelian p-group of order pq, which can be considered
to be a q-dimensional vector space over GF(p). Conjugation by the elements ak

(0 ≤ k < m) are linear transformations of N . Furthermore, in this space N ∩ H is

a one-dimensional subspace. The conjugates (N ∩ H)a
k

= N ∩ Hak (0 ≤ k < m)
pairwise intersect trivially by Claim 4.3, so these conjugates of N ∩ H are pairwise
distinct one-dimensional subspaces of N . Since there are m conjugates of N ∩ H
and m one-dimensional subspaces of N , it follows that the conjugates (N ∩ H)a

k

(0 ≤ k < m) of N ∩H are exactly the one-dimensional subspaces of N . This implies
that GN is the q-dimensional affine geometry over GF(p). All items (N1)–(N5) follow
from this.
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Now we will consider functions λ : G0 → N which preserve the equivalence relations
α
Hak for all k (0 ≤ k < m). Geometrically, these are exactly the color-preserving

functions which map the points of the geometry G0 into the points of the geometry
GN . We will refer to these functions as color-preserving functions G0 → GN .

Claim 4.6. Every color-preserving function G0 → GN is constant.

Our argument will be based exclusively on the properties of the geometries G0 and
GN listed in Claims 4.4 and 4.5. From the definition of the coloring it is essential
that we use the same set of colors in the two geometries, but it is irrelevant that
the colors come from groups Hak ; therefore we will use colors like ‘red’, ‘blue’, etc.,
and in Figures 4 and 5 different colors will be represented by different kinds of lines
(continuous, dotted). Notice that by properties (G2)–(G3) and (N2)–(N3), every line
in each geometry G0 and GN has a uniquely determined color, so there is no ambiguity
in talking about the color of a line.

Let λ : G0 → GN be a color-preserving function. If X is a point in G0, then we will
refer to λ(X) as the label of X.
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Suppose that there are two distinct points P, P ′ ∈ G0 in the same row such that
λ(P ) 6= λ(P ′). By (N5), there is a line through λ(P ) and λ(P ′) in GN . Call the
color of this line red. Now consider the red lines K and K ′ incident to P and P ′,
respectively, in G0. Such lines exist by (G1), and are distinct, and hence disjoint
by (G4) and (G2). Let Q be any point of K distinct from P . By (G4) Q is in a
different row than P and P ′, therefore by (G5) there is a unique line L containing Q
and P ′, and by (G2) its color is not red. Call the color of L blue. Since λ is color-
preserving, therefore the labels λ(P ′), λ(P ), λ(Q) are on the same red line in GN , and
λ(P ′), λ(Q) are also on the same blue line in GN . (See Figure 4.) By (N3), in GN
two lines with different colors can have at most one point in common, so we conclude
that λ(Q) = λ(P ′). Since Q 6= P can be chosen arbitrarily on K, this proves that
every point of the line K, except P , has the same label as P ′. Switching the roles of
P and P ′ we get that every point of the line K ′, except P ′, has the same label as P .



16 KEITH A. KEARNES AND ÁGNES SZENDREI

Now let us fix a point Q on K which is distinct from P , and using (G4) find the
point Q′ on K ′ which is in the same row as Q. From what we proved in the preceding
paragraph it follows that λ(Q) = λ(P ′) 6= λ(P ) = λ(Q′). Therefore we can repeat
the argument of the preceding paragraph for Q,Q′ in place of P, P ′ to conclude that
every point of the line K, except Q, has the same label as Q′, and every point of the
line K ′, except Q′, has the same label as Q. This shows that every point of K \ {P}
has label λ(P ′), and also every point of K \ {Q} has label λ(Q′) = λ(P ) 6= λ(P ′).
Since the line K has q points, this is impossible unless q = 2. But q = 2 implies that
m = p+ 1. Since m and p are prime, this forces p = 2 and m = 3. However, the case
m = 3 is excluded by our assumption. So this contradiction shows that λ is constant
on every row of points in G0.

Now let P , P ′ and R be arbitrary points in G0 such that P, P ′ are in the same row,
and R is in a different row. By (G5) there is a unique line L incident to P and R,
and a unique line L′ incident to P ′ and R. By (G2) L and L′ have different colors,
so let L be green and L′ be yellow, say. (See Figure 5.) We know from the previous
paragraph that λ(P ) = λ(P ′). Since the function λ is color-preserving, it follows also
that λ(P ), λ(R) are on the same green line in GN , and λ(P ′), λ(R) are on the same
yellow line in GN . But then the two points λ(P ) = λ(P ′) and λ(R) are incident to
two lines of different colors. So it follows from (N3) that λ(P ) = λ(R). This shows
that the labels on different rows are the same. Hence λ is constant, concluding the
proof of Claim 4.6.
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Figure 5

Now we are in a position to complete the proof of Proposition 4.2. Let f̃ : G→ N

be a function satisfying conditions (a)–(b) in Theorem 3.4. We have to prove that f̃
is a constant function. By (a) it will follow then that it is the constant function with
value 1.

The collection of equivalence relations αHg (g ∈ G) is invariant under the per-
mutations in LG, and also under conjugation by elements of G. Therefore, together

with the function f̃(x), every function f̃(g−1x) and f̃(hxh−1) (g, h ∈ G) will also
satisfy condition (b). By combining the two transformations (left translation and
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conjugation) we see that every function of the form f̃(g−1(hxh−1)) with (g, h ∈ G)
will satisfy condition (b). In particular, all these functions, when restricted to G0,
will yield a color-preserving function G0 → GN . Hence, by Claim 4.6, all of these

functions are constant. Consequently f̃ is constant on every left coset of every con-

jugate of G0, or equivalently, f̃ is constant on all blocks of each equivalence relation

αGh0 (h ∈ G). This implies that f̃ is constant on all blocks of the smallest equivalence

relation containing all αGh0 (h ∈ G), which is the relation αM where M is the least

subgroup of G containing all Gh
0 (h ∈ G). This subgroup M must be normal, and

must contain G0, therefore M = G. Hence f̃ is a constant function, as claimed. �
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[7] Á. Szendrei, Clones in Universal Algebra, Séminaire de Mathématiques Supérieures, vol. 99,
Les Presses de l’Université de Montréal, Montréal, 1986.

[8] Á. Szendrei, Simple surjective algebras having no proper subalgebras, J. Austral. Math. Soc.
Ser. A 48 (1990), 434–454.

(Keith A. Kearnes) Department of Mathematics, University of Louisville, Louisville,
KY 40292, USA.

E-mail address : kearnes@louisville.edu
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