
CATEGORICAL QUASIVARIETIES VIA MORITA
EQUIVALENCE

KEITH A. KEARNES

Abstract. We give a new proof of the classification of ℵ0-categorical
quasivarieties by using Morita equivalence to reduce to term min-
imal quasivarieties.

1. Introduction

When T is a first–order theory and λ is a cardinal, we write SpecT (λ)
to denote the number of isomorphism classes of models of T which have
power λ. T , or the class of models of T , is said to be λ–categorical if
SpecT (λ) = 1. Baldwin and Lachlan proved in [1] that for a universal
Horn class Q the following conditions are equivalent:

• Q is λ–categorical for some infinite λ andQ has a finite member.
• Q is ℵ0–categorical.
• Q is λ–categorical for all infinite λ.

This raises the question of which quasivarieties of algebras satisfy these
conditions. Independently and at about the same time, Givant ([3],
[4]) and Palyutin ([15], [16]) answered this question. Later, in [11],
McKenzie gave a new proof using the newly developed techniques of
tame congruence theory. In this paper we give another proof. Our
proof, which is shorter than previous proofs, is based on the easily
proved but crucial fact established in Lemma 5.3. Therefore, it is
worthwhile now to explain the significance of this lemma.

Let A be an algebra and let e be a unary term in the language of
A. If A |= e(e(x)) = e(x), then we call e an idempotent of A. If e is
an idempotent of A, then we call its range, e(A), a neighborhood of A.
There is a way, described in Section 2, of restricting the structure of
A to a neighborhood e(A). This restriction, denoted by e(A), is called
the localization of A to the neighborhood e(A). If Q is a quasivariety
and e is a unary term in the language such that Q |= e(e(x)) = e(x),
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then the class, e(Q), of localizations of members of Q to the range of e
is also a quasivariety and the assignment A 7→ e(A) is the object part
of a functor. Localization simplifies the situation, usually at the price
of a loss of some information. The significance of Lemma 5.3 is that
it shows that the localization functor is a Morita equivalence for ℵ0–
categorical quasivarieties. This means that one loses no information by
localizing, although one does simplify things. Since ℵ0–categoricity is
Morita invariant, this allows us to reduce the classification problem for
categorical quasivarieties to the special case where all members of the
quasivariety are minimal with respect to localization. In this setting
the problem is easily solved.

To read the paper one must know what a Boolean power is (see
[6]), and a little bit about tame congruence theory (see [5] or [10]).
In this paper a ‘type’ will always refer to a type in the sense of tame
congruence theory. To avoid conflict, the similarity type of an algebra
will be referred to as its signature. We have no need to refer to types
in the sense of model theory. There will be conflicting uses of the
words ‘idempotent’ and ‘affine’, and here is how we will resolve them.
An operation h of arity greater than one is idempotent if the equation
h(x, x, . . . , x) = x holds. A class of algebras is idempotent if each
member has only idempotent term operations. As described above, a
unary operation e is idempotent if e(e(x)) = e(x) holds. An algebra is
affine if it is polynomially equivalent to a module, and a class is affine
if it consists of affine algebras. An affine operation is an operation
representable as a module polynomial. However, an affine module is
the reduct of a module to its idempotent operations.

In order to keep the paper as self-contained as possible and to em-
phasize the algebraic flavor of the proof, I have supplied short algebraic
arguments for some basic facts about ℵ0-categoricity which are known
to all model theorists although perhaps not to all algebraists (for ex-
ample, Theorems 5.1, 5.2 and Lemma 5.5). One model-theoretic fact
which I did not see how to replace with a short algebraic argument is
the fact that an ℵ0-categorical theory is definitionally equivalent to a
theory in a countable language (see Theorem 12.2.2 of [6]). To avoid
this issue I assume throughout the paper that the language is count-
able.

2. Morita Equivalence

In the classical theory of Morita equivalence one describes certain
concrete functors between full module categories and proves that those
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functors are categorical equivalences. Then one shows that all categor-
ical equivalences are of the concrete type. In [12] McKenzie extends
this scheme of ideas so that it encompasses not only module categories
but to fairly general categories of algebras of any signature. For the
purposes of this paper it suffices to know that the results of [12] apply
to all quasivarieties. In this section we describe a type of concrete func-
tor called ‘Morita equivalence’ which [12] proves to represent a general
categorical equivalence between quasivarieties.

‘A class of algebras’ will always mean ‘a class of algebras of the same
signature’. When a class of algebras is considered as a category, the
morphisms are taken to be all homomorphisms. We consider only al-
gebras with no constant symbols. Instead, the role of constants will be
played by constant unary operations. The only situation where con-
stant unary operations are inadequate substitutes for zeroary constants
are when one must deal with the empty algebra, which supports con-
stant unary operations but no constant zeroary operations. We leave
it to the interested reader to interpret the results herein as they apply
to the empty algebra.

Let K be a class of algebras of signature Σ. A definitional expansion
of K is a class K+ of algebras obtained from K by expanding Σ to a
signature Σ+ ⊇ Σ where for each symbol F ∈ Σ+−Σ there is a Σ–term
f of the same arity as F such that F and f have the same interpretation
in K+. Classes K and L are definitionally equivalent, written K ≡ L, if
they have equal definitional expansions. We write A ≡ B to mean that
{A} ≡ {B}. Changing from a class K of algebras to a definitionally
equivalent class L is nothing more than changing the language. This
‘change of language’ is a categorical equivalence from K to L which
assigns to each member of K ‘itself’ considered as a member of L, and
assigns to each morphism itself.

An algebra A is weakly isomorphic to an algebra B (written A ∼=w B)
if A is isomorphic to an algebra A′ where A′ ≡ B. This means exactly
that there is a bijection ϕ : A → B which induces an isomorphism
(ϕ) : Clo (A) → Clo (B) between the corresponding clones of term
operations according to the following rule:

(ϕ)n(h(x1, . . . , xn)) = ϕ(h(ϕ−1(x1), . . . , ϕ−1(xn)).

(The clone of an algebra is the multisorted algebra whose elements are
the term operations of the algebra and whose operations are composi-
tion and projection.)

If A is an algebra, then the [k]–th power of A is the algebra with
universe Ak whose n–ary operation symbols are the k–tuples F =
〈f1, . . . , fk〉 where each fi is an nk–ary term in the language of A.
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Here is how we interpret F as an n–ary operation on Ak. First, if
a1, . . . , an ∈ Ak, then write these n vectors as the columns of a k × n
matrix M . Let ~M denote the nk–vector consisting of the concatenation
at1̂ · · · ̂atn. (As a row vector, ~M = 〈a1

1, a
2
1, · · · , ak1, a1

2, · · · , akn〉.) Now,
F acts on M according to the rule

F (a1, . . . , an) = F







a1
1
...
ak1


 , · · · ,




a1
n
...
akn





 :=




f1( ~M)
...

fk( ~M)


 ∈ Ak.

The [k]–th power of A is denoted A[k]. If K is a class of algebras, then
the algebras isomorphic to [k]–th powers of algebras in K have the same
signature and the collection of them is denoted K[k]. The [k]–th power
construction is the object part of a categorical equivalence from K to
K[k] whose morphism part assigns to a homomorphism its k–fold power
acting coordinatewise.

Let K be a class of algebras and let e be a unary term in the
language of K. We describe a construction on classes K 7→ e(K)
by first describing the construction on individual algebras. We write
e(A) to denote the algebra with universe e(A) and operation symbols
{et | t a term of A}. We interpret et as an operation on e(A) by inter-
preting et as an operation on A and then restricting the domain to e(A).
If K is a class of algebras and e is an idempotent of K, then we write
e(K) for the class {e(A) | A ∈ K}. The class e(K) consists of algebras
of the same signature. The assignment A 7→ e(A) is the object part of
a functor from K to e(K). The morphism part of the functor assigns
to a homomorphism ϕ : A→ B its restriction ϕ|e(A) : e(A)→ e(B).

Regarding the construction described in the previous paragraph, a
special case of interest is the case where e is an invertible unary term.
A unary term e (not necessarily idempotent) is said to be invertible
with respect to the class K if there exists, for some n, an n–ary term
σ and n unary terms τi such that

K |= σ(eτ1(x), . . . , eτn(x)) = x. (2.1)

Invertibility of an idempotent term e implies that K 7→ e(K) is a cate-
gorical equivalence.

Definition 2.1. A class K of algebras is Morita equivalent to a class
L if there is a k < ℵ0 and an invertible unary term e of K[k] such that
e(K[k]) ≡ L.

Morita equivalence is an equivalence relation on classes of algebras.
If two classes of algebras are Morita equivalent, then they are equiv-
alent as categories. The converse holds for quasivarieties (see [12] for
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this and for everything else claimed up to this point concerning [k]–th
powers, invertible idempotents and Morita equivalence). Morita equiv-
alence preserves finiteness and cardinalities of infinite algebras. (This is
obvious for definitional equivalence and [k]–th powers and follows from
equation (2.1) for the construction K 7→ e(K).) Hence, λ–categoricity
is a Morita invariant for infinite λ.

3. Term Minimal and Permutational Algebras

An algebra is term minimal if its only nonconstant idempotent unary
term operation is the identity. An algebra is permutational if its non-
constant unary term operations form a group under composition. A
class of algebras is said to be term minimal or permutational if each
member is. Clearly “permutational =⇒ term minimal”, since the only
idempotent element of a group is the identity element, but the converse
implication fails. For example, any p-group is term minimal, but it is
not permutational if its exponent is greater than p.

Our plan is to show that every ℵ0–categorical quasivariety is Morita
equivalent to a minimal, locally finite, permutational ℵ0–categorical
quasivariety. Such a quasivariety is generated by a finite permuta-
tional algebra with no proper nontrivial subalgebras. Understanding
the structure of such algebras is a fundamental problem in the model
theory of locally finite algebras. See the citations following Theorem 3.4
to learn what is known about the solution to this problem.

Definition 3.1. Let G be a group. An algebra is a G–algebra if it is
weakly isomorphic to an algebra with universe G which has

(i) each left multiplication λg(x) := gx, g ∈ G, as a term operation
and

(ii) each right multiplication ρg(x) := xg, g ∈ G, as an automor-
phism.

An algebra is a G0–algebra if it is weakly isomorphic to an algebra with
universe G ∪ {0} (we assume 0 6∈ G) which has

(i) the constant 0(x) ≡ 0 and each left multiplication λg(x) := gx,
g, x ∈ G, λg(0) = 0, as term operations and

(ii) each right multiplication ρg(x) := xg, g, x ∈ G, ρg(0) = 0, as
an automorphism.

A G–algebra is nothing more than an algebra which is freely gener-
ated by each one of its elements. A similar statement, with the obvious
modification, holds for G0–algebras.
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In order to state the next result we introduce some standard termi-
nology: a finite algebra whose expansion by constants is term minimal
is called E-minimal.

Theorem 3.2. Let A be a finite term minimal algebra with no non-
trivial proper subalgebras. Then A is:

(i) an idempotent simple algebra,
(ii) the constant expansion of an E-minimal algebra,

(iii) a quotient of a G–algebra, or
(iv) a quotient of a G0–algebra.

Proof. An observation that we will use repeatedly, which depends on
the finiteness of A, is that if f(x) is a unary term operation then some
iterate f k(x) is idempotent. Therefore if f is not a permutation then
the term minimality of A implies that for some k the term operation
fk(x) is constant.

Claim 3.3. If there are elements 0, a ∈ A such that {0} is a subuni-
verse and {a} is not, then {0} is the range of a constant term operation
and is the only 1-element subuniverse of A.

Proof. Since {a} is not a subuniverse it is a generating set. There
is a unary term f such that f(a) = 0. This f is not a permutation,
since f(a) = f(0), so there is some k such that f k(x) is constant. Since
fk(0) = 0, the range of f k is {0}. No element other than 0 is preserved
by f k, so {0} is the only 1-element subuniverse.

Let’s continue with the proof of the theorem. Assume that A has at
least two 1-element subuniverses. Claim 3.3 implies that every element
of A is a 1-element subuniverse. This is equivalent to the statement
that A is idempotent. Any congruence class of an idempotent algebra
is a subuniverse, so any idempotent algebra with no proper nontrivial
subalgebras is simple. We are in Case (i).

The set of images of constant term operations is a subuniverse. If
this subuniverse has more than one element, then it must be all of A.
In this case every element of A is the image of a constant term. Now
we are in Case (ii).

If we are not in Cases (i) or (ii), then A has at most one element
which is the image of a constant term (and that element is necessarily
a subuniverse), and it has at most one 1-element subuniverse (which,
by Claim 3.3, is the image of a constant term). Thus, A has exactly
one element, 0, which is the image of a constant term operation and
this element represents the unique 1-element subuniverse of A, or else
A has no proper subalgebras and no constant term operations. We
claim that in either case A is permutational.
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If A has no constant term operations, then for any unary f its idem-
potent iterate f k must be the identity function on A. Hence all unary
term operations are permutations of finite order, which implies that A
is permutational.

Now suppose that A has exactly one element 0 such that {0} is a
subuniverse and the range of a constant operation. Assume that f is
a unary term operation which is not a permutation. Then for some
k we have f k(x) = 0. Assume that k is minimal for this and that
k > 1. Choose u ∈ f k−1(A) − {0} and v ∈ f−1(u). Since {u} is not
a subuniverse it is a generating set, so there is a term g such that
g(u) = v. Now h := fg is a unary term satisfying h(A) ⊆ f(A) 6= A
and h(u) = u 6= 0 = h(0). It follows that any idempotent iterate of h
is neither the identity nor a constant. This contradicts our assumption
that A is term minimal, so k > 1 is not possible.

We continue under the assumption that A is not in Cases (i) or
(ii), and therefore that A is permutational. Let Q be the quasivariety
generated by A. The fact that the unary term operations of A form
a group with perhaps one constant can be expressed equationally, so
the the unary term operations of F = FQ(1) have the same properties
as those of A. This and the freeness of F imply that F is either a
G–algebra or a G0–algebra. Since A is generated by any element not
equal to zero it is a quotient of F. Hence we are in either Case (iii) or
(iv) depending on whether or not we have a constant term. �

The algebras in Cases (i), (iii) and (iv) of Theorem 3.2 are permu-
tational. There exist ‘Case (ii)’–algebras which are not permutational
(p-groups), but they do not appear in this paper. Therefore we re-
state the previous theorem for permutational algebras. We introduce
another standard term: If the constant expansion of an algebra is per-
mutational, then the algebra is called minimal.

Theorem 3.4. Let A be a finite term minimal algebra with no nontriv-
ial proper subalgebras. A is permutational iff every nonconstant unary
term is invertible. Such an algebra is:

(i) an idempotent simple algebra,
(ii) the constant expansion of a minimal algebra,

(iii) a quotient of a G–algebra, or
(iv) a quotient of a G0–algebra.

Proof. It is only the first statement of this theorem that has not yet
been proved. For the trivial direction of that statement: If A is per-
mutational then it is term minimal and every nonconstant unary term
operation is invertible in the sense of equation 2.1 since this kind of
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invertibility for a term f is obviously a weakening of the property that
f−1 is a term operation.

Assume conversely that A is term minimal and that every noncon-
stant unary term is invertible in the sense of equation 2.1. In order to
obtain a contradiction assume that A is not permutational. Then we
must be in Case (ii) of Theorem 3.2 and A must have a nonconstant f
which is not a permutation. Since the nonconstant unary terms of A
are invertible in the sense of equation 2.1 there are terms σ and τi such
that A |= σ(fτ1(x), . . . , fτk(x)) = x. Choose a pair of congruences
α ≺ β in A. By Lemma 4.28 of [5] the fact that A is E-minimal and f
is not a permutation implies that f(β) ⊆ α. Thus, if (a, b) ∈ β − α we
get that (fτi(a), fτi(b)) ∈ α for all i. Hence

a = σ(fτ1(a), . . . , fτk(a)) ≡α σ(fτ1(b), . . . , fτk(b)) = b,

which is false. This contradiction completes the proof. �
All finite algebras that fall into Case (i) of Theorems 3.2/3.4 are

known. See [18] for details. The finite algebras described in Theo-
rem 3.2 (ii) can be obtained by combining results of [5] and [10]. The
finite algebras from Theorem 3.4 (ii) are described in [13]. The finite
simple algebras described in Cases (iii) and (iv) of Theorems 3.2/3.4
are described in [19] and [20].

‘Unfortunately’ for our paper, the finite nonsimple algebras in Cases
(iii) and (iv) are not yet known. One reason that we are still unfamiliar
with G– and G0–algebras is that for a nontrivial group G the interval
in the lattice of clones on the set G ∪ {0} which corresponds to the
G0–algebras is big.1

Having alerted the reader to the mystery surrounding the structure
of G– and G0–algebras we now confess that these complexities will
not intrude upon us, for to describe categorical quasivarieties it will
be enough to understand certain abelian G– and G0–algebras. We
describe these algebras in the next section.

We close this section with a result (needed later) concerning Morita
equivalence and the simplest kinds of permutational quasivarieties.

Lemma 3.5. (See [9].) If Q is an essentially unary permutational
quasivariety, then a quasivariety is Morita equivalent to Q if and only
if it is definitionally equivalent to Q[k] for some k.

1It is shown in [20] that this interval contains 2ℵ0 inequivalent G0–algebras for
any finite nontrivial group G. The interval in the lattice of clones on G which
corresponds to the G–algebras can be shown to be infinite for ‘most’ groups G.
The only known exceptions are the finite simple groups. See [14] for a proof that
there are only finitely many inequivalent G–algebras when G is finite and simple.
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4. Affine and Abelian Algebras

An algebra A is abelian if the diagonal of A × A is a congruence
class. There is a commutator of congruences described in Chapter 3
of [5] that generalizes the group commutator, and with respect to this
commutator an algebra is abelian in the sense just defined iff it satisfies
[1, 1] = 0.

An algebra A is affine if it is polynomially equivalent to a module.
This statement means that there is a unital ring R and a (left, uni-
tal) R-module M such that M has the same universe and polynomial
operations as A. Thus any polynomial operation of A is expressible
in the form p(x1, . . . , xn) = r1x1 + · · · + rnxn + m with ri ∈ R and
m ∈ M . To see that affine algebras are abelian it is enough to note
that the definition of the abelian property depends only on polynomial
structure, and that modules satisfy the definition.

It is not hard to show that if A is polynomially equivalent to M,
then a module polynomial

p(x1, . . . , xn) = r1x1 + · · ·+ rnxn +m

of M belongs to the clone of A if and only if the derived unary poly-
nomial p(x, . . . , x) = (r1 + · · · + rn)x + m belongs to the clone of A.
Therefore, an algebra A polynomially equivalent to an R-module M is
specified up to definitional equivalence by the data: R, M, and the set
of unary module polynomials which are unary term operations of A. To
make the transition from “knowing A up to polynomial equivalence” to
“knowing A up to definitional equivalence” we have to determine the
possible sets of unary functions on M which could be the unary part
of the clone of A. This is worked out in an elegant way in Proposition
2.6 of [17] which we reproduce in a reworded form.

Theorem 4.1. Let A be an algebra which is polynomially equivalent to
a faithful R-module M. The set UA of all pairs of the form (1−r,m) ∈
R×M , where r(x)+m is a unary term operation of A, is a submodule
of the R-module R×M.

Conversely, given any R-submodule U of R ×M, the algebra AU

whose universe is M and whose operations are all r1x1 + · · ·+rnxn+m
with (1− (

∑
ri), m) ∈ U is an algebra polynomially equivalent to M.

The mappings A 7→ UA and U 7→ AU are inverse bijections between
the definitional equivalence classes of algebras polynomially equivalent
to M and the submodules of R×M.

The proof of Theorem 4.1 follows immediately from its statement.
For the next theorem, which determines affine G–algebras, J(R)

denotes the Jacobson radical of R.
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Theorem 4.2. An affine algebra A is a G–algebra iff there is a ring R,
a faithful R–module M and a homomorphism ϕ : M → J(R) of (left)
R–modules such that A is definitionally equivalent to the algebra whose
universe is M and whose term operations are all module polynomials
(
∑n
i=1 rixi) +m such that (

∑n
i=1 ri) + ϕ(m) = 1.

Proof. This is a straightforward application of Theorem 4.1, and we
give only the following hint: If A is polynomially equivalent to the
R-module M, then the structure of A is determined by R, M, and an
R-submodule U of R×M. Show that A is a G–algebra if and only if
the converse of U is the graph of a function ϕ : M→ J(R). �

In the previous theorem, the group of unary operations of A are
those polynomials of M of the form (1− ϕ(a))x + a, a ∈ A. When R
is Jacobson semisimple then ϕ(M) = {0}, so the unary operations of
A must be the set of translations: {x+ a | a ∈ A}. Hence, A is defini-
tionally equivalent to the expansion by translations of the idempotent
reduct of M.

Theorem 4.3. A finite G0–algebra is abelian iff it is it is essentially
unary or definitionally equivalent to a one–dimensional vector space
over a finite field.

Proof. Essentially unary algebras and vector spaces are abelian, so we
need to prove the converse.

If A is an abelian G0–algebra and p(x) = t(x, a1, . . . , an) is a unary
polynomial of A, then by the abelian property p(x) has the same kernel
as p′(x) = t(x, 0, . . . , 0) (see 3.1.1 of [5]). As p′ is a unary term it is
a permutation or a constant; the same must be true for p. Thus, A
is an abelian minimal algebra, and by Pálfy’s Theorem it is essentially
unary or polynomially equivalent to a vector space over a finite field.
Theorem 4.1 implies that an algebra that has the same polynomial
operations as a vector space is definitionally to that vector space if it has
a unique 1-element subalgebra. Since G0–algebras are one–generated,
A must be a one–dimensional vector space. �

We close this section by remarking that the property of being affine
is a Morita invariant for quasivarieties. This can be proved by checking
that each of the constituent functors in a Morita equivalence preserve
affineness.



CATEGORICAL QUASIVARIETIES VIA MORITA EQUIVALENCE 11

5. ℵ0–Categorical Quasivarieties

This section houses our proof of the main result of the paper. As
stated in the introduction of the paper, we deal only with quasivarieties
in a countable language.

Theorem 5.1. An ℵ0–categorical quasivariety is a minimal, locally
finite quasivariety.

Proof. The free algebra F in the quasivariety Q generated by a count-
ably infinite set is a countably infinite member of Q. Since this algebra
is not finitely generated and each finitely generated free algebra FQ(n)
is countable, it follows by ℵ0–categoricity that each FQ(n) is finite.
Thus Q is locally finite.

If A is any finitely generated (hence countable) member of Q and
B is a countably infinite Boolean algebra, then the Boolean power
A[B]∗ ∼= F by ℵ0–categoricity. But A and A[B]∗ generate the same
quasivariety. Hence all finitely generated members of Q generate the
same subquasivariety; this proves that Q is minimal. �

We now fix notation we will use through the rest of this paper. Q
denotes an ℵ0–categorical quasivariety. F denotes a free algebra of Q
generated by a countably infinite set. A denotes a nontrivial member
of Q which has no nontrivial proper subalgebras. The choices of F and
A are unique up to isomorphism — for F, by the categoricity of Q; for
A, by the minimality and local finiteness of Q. In particular, A must
be the smallest nontrivial algebra in Q.

The following is the only fragment of the Ryll-Nardzewski Theorem
that we will need.

Theorem 5.2. The permutation group 〈F ; Aut (F)〉 has finitely many
orbits.

Proof. Let B be the countable atomless Boolean algebra. It is well
known and easy to prove that any isomorphism between finite subalge-
bras of B extends to an automorphism of B. (See Example 4 of Section
3.2 of [6].) This implies that if f, g ∈ A[B]∗ are continuous functions
from the Stone space of B to A which have the same range, then there
is an automorphism of A[B]∗ which maps f to g. But there are only
finitely many possible ranges of functions into A since A is finite. It
follows that A[B]∗ has finitely many orbits under its automorphism
group. Since F ∼= A[B]∗ by categoricity, we are done. �

Lemma 5.3. Every nonconstant unary term of Q is invertible.
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Proof. Choose a unary term f and let X = {x1, x2, . . . } be a set of
free generators for F. If the term operation associated to f is not an
injective function from X into F , then f(xi) = f(xj) for some i 6= j.
This is an equation of Q which forces f to be constant. Therefore, if
f is not constant, then f(F ) is infinite.

Assume that f(F ) is infinite and let F′ be the subalgebra of F gen-
erated by f(F ). The algebra F′ is a characteristic subalgebra of F
which, by categoricity, is isomorphic to F. As a first case we assume
that F′ 6= F. If so, then since F′ ∼= F we get that F′ also has a
proper characteristic subalgebra F′′. In fact we get a proper descend-
ing sequence of characteristic subalgebras F ⊃ F′ ⊃ F′′ ⊃ · · · . Since
this is a descending chain of characteristic subalgebras, each subset
F (i) − F (i+1) is a nonempty union of Aut (F)–orbits. However, there
are only finitely many Aut (F)–orbits altogether by Theorem 5.2, so
the case where F′ 6= F cannot occur.

It must be that F is generated by f(F ). Since x1 ∈ F = SgF(f(F )),
there is a term σ of arity m and m terms ti of arity n, for some m and
n, such that

σ(ft1(x̄), . . . , f tm(x̄)) = x1.

Applying the endomorphism of F determined by mapping all free gen-
erators to x1 we obtain

σ(fτ1(x1), . . . , fτm(x1)) = x1.

where τi(x) := ti(x, x, . . . , x). This equality in F implies that

Q |= σ(fτ1(x), . . . , fτm(x)) = x.

Hence f is invertible. �
Choose a nonconstant (invertible) idempotent e of Q which mini-

mizes |e(A)|. This minimality condition implies that e(A) is term min-
imal. Lemma 5.3 applied to Q shows that e : Q → e(Q) is a Morita
equivalence, so e(Q) = SP(e(A)) is ℵ0–categorical. Now we may apply
Lemma 5.3 to e(Q) to deduce that all nonconstant unary terms of this
quasivariety are invertible in the sense of equation 2.1. By the first
remark in Theorem 3.4, e(A) (and hence e(Q)) is permutational. Re-
placing Q, A and F with e(Q), e(A) and e(F) we henceforth assume
that Q is a permutational quasivariety.

Lemma 5.4. A is

(i) an idempotent simple algebra,
(ii) the constant expansion of a minimal algebra,

(iii) a G–algebra, or
(iv) a G0–algebra.
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Proof. This statement follows from Theorem 3.4, provided that we can
show in (iii) (and (iv)) that A is a G–algebra (G0–algebra), rather
than just a quotient of a G–algebra (G0–algebra).

In both of the cases FQ(1) is a G–algebra (G0–algebra) with no
proper nontrivial subalgebras, and so FQ(1) satisfies the defining prop-
erty for A. Hence, A (∼= FQ(1)) is a G–algebra (G0–algebra). �

We need to rule out the possibility that A is a nonabelian simple
algebra in Cases (i) and (ii) of Lemma 5.4. Let SpecC(λ) denote the
function SpecT (λ) where T is the theory of SP(C).

Lemma 5.5. If C is finite, simple and nonabelian, then SpecC(λ) = 2λ

for all infinite λ.

Proof. Since C is finite SpecC(λ) ≤ 2λ, so we only need to prove the
reverse inequality. Also, it suffices to prove this result for the expansion
of C by constants. To see that this is so, there are two things to note:
first, expanding C doesn’t affect finiteness, simplicity or nonabelian-
ness. Second, the reduct functor from SP(CC) to SP(C) is cardinality
preserving on objects and is at most a λ–to–1 mapping among the alge-
bras of power λ ≥ ℵ0. Hence, SpecC(λ)+λ = SpecCC

(λ)+λ for infinite

λ. It follows that SpecC(λ) = 2λ iff SpecCC
(λ) = 2λ. We assume now

that every polynomial of C is a term.
Our argument will be to prove that C is cancellable in Boolean pow-

ers (or B-seperating). Since C is nonabelian, its tame congruence theo-
retic type label is 3 , 4 , or 5 . There is an idempotent unary polynomial
(= term) e such that e(C) is weakly isomorphic to the two–element
Boolean algebra, the two–element bounded lattice or the two–element
bounded semilattice. In the type 3 case (Boolean type), we can see
that

C[B]∗ ∼= C[B′]∗ =⇒ B ∼= B′

as follows. If C[B]∗ ∼= C[B′]∗, then

B ∼=w e(C)[B]∗ ∼=w e(C[B]∗) ∼= e(C[B′]∗) ∼=w e(C)[B′]∗ ∼=w B′.

But the only weak isomorphisms between Boolean algebras are isomor-
phisms or dual isomorphisms. Hence, B ∼= B′ and C is cancellable
in Boolean powers. It follows that SpecC(λ) ≥ 2λ, since the latter
function is the spectrum function for Boolean algebras.

The type 4 and 5 cases are handled in the same way, since the
Boolean operations are definable from the operations of a (Boolean–
ordered) bounded lattice or semilattice. �

A more complicated argument is given in [2] to prove the stronger
result that C is cancellable in Boolean powers if it is nonabelian and
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subdirectly irreducible. Some of the arguments that follow can be
shortened if one uses this result.

Theorem 5.6. The algebra A is an idempotent simple algebra if and
only if it is weakly isomorphic to

(i) a two–element set (considered as an algebra with no operations)
or

(ii) a simple affine module over a simple ring.

Proof. Assume that A is an idempotent simple algebra. By Lemma 5.5,
A is abelian. But it follows from [18] or [7] that an idempotent simple
algebra which is both finite and abelian is weakly isomorphic to a two–
element set or to a simple affine module over a simple ring.

To prove the converse, we must show that a quasivariety generated
by a two–element set or an affine module over a simple ring is ℵ0–
categorical. The argument is trivial for the two–element set. Assume
that B is a simple affine module over the simple ring, R. Let H and H′

be any two members of SP(B) which have the same cardinality. If we
choose arbitrary 0 ∈ H and 0′ ∈ H ′ and form the one–point expansions
H∗ and H′

∗
, we get a pair of algebras which are definitionally equivalent

to R–modules and have the same cardinality. Note that (a) the variety
of R–modules is categorical in every power for which there is a model
(because R is Morita equivalent, in the classical sense, to a finite field)
and (b) the definitions used to convert H∗ and H′

∗
into R–modules are

the same. From (a) and (b), we conclude that H∗ ∼= H′
∗
. This proves

that H ∼= H′. �
Theorem 5.7. The algebra A is the constant expansion of a minimal
algebra if and only if it is weakly isomorphic to

(i) the constant expansion of a nontrivial finite G–set where every
g ∈ G− {1} has at most one fixed point or

(ii) the constant expansion of a nontrivial finite vector space.

Proof. Assume that A is a permutational algebra which is the constant
expansion of a minimal algebra. By Lemma 5.5, A is not a simple
nonabelian algebra. By the main result of [13] (or by Corollary 4.11
of [5]) A is weakly isomorphic to the constant expansion of a finite
G–set or to a finite vector space. To prove the forward direction of the
theorem, we only need to consider the case where A is the constant
expansion of a finite G–set, 〈G;A〉, where G acts faithfully. In this case
we must show that every g ∈ G− {1} has at most one fixed point.

For a subset X ⊆ A we write Stab (X) to denote the subgroup of
G which fixes X pointwise. The statement that G acts faithfully on
A is equivalent to Stab (A) = {1}. When κ is an ordinal, we define
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a κ–termed sequence of elements of A to be a function from κ to A.
A sequence is an ω–termed sequence. We may write a sequence f as
a0a1a2 · · · to mean that f(i) = ai.

Choose a 6= b ∈ A. Let C be a subalgebra of Aω generated by
countably infinitely many {a, b}–valued sequences. Since A is a con-
stant expansion of a G–set, to describe C it will suffice to say how
many orbits of each kind C has and how the constants are to be in-
terpreted. C will have a subalgebra consisting of the interpretations of
constant terms, and this subalgebra will be isomorphic to A. This is
the subalgebra of constant sequences. Any orbit not contained in this
subalgebra is the orbit of some {a, b}–valued sequence which is not a
constant sequence. Such an orbit is a G–set isomorphic to the G–set
of left translations of cosets of Stab ({a, b}) in G. This orbit contains
no element which is the image of a constant term. Thus, C is (isomor-
phic to) the disjoint union of A and countably infinitely many copies
of G/Stab ({a, b}) considered as a left G–set. Let D be a subalgebra
of Aω generated by countably infinitely many sequences which, con-
sidered as functions, are surjective or constant. Arguing as with C,
D is the disjoint union of A and countably infinitely many copies of
G/Stab (A) (∼= G) as a left G–set. By categoricity, orbits in C must
match orbits in D, so Stab ({a, b}) = Stab (A) = {1} whenever a 6= b
in A. This is equivalent to the assertion that each g ∈ G− {1} has at
most one fixed point.

To prove categoricity for Case (i), assume that B is as described in
(i), 0 < κ and C ≤ Bκ is nontrivial. Any κ–termed sequence f ∈ C
will generate a subalgebra isomorphic to B if f is constant, otherwise it
will generate an orbit which is isomorphic to the G–set G/Stab (f(κ))
(∼= G) under left translations. All constant κ–termed sequences have
range contained in the orbit isomorphic to B. Hence, any member of
SP(B) is isomorphic to the disjoint union of B and some number of
copies of G considered as a left G–set. SpecB(λ) ≤ 1 for all λ in this
situation.

If B is as in Case (ii), let V be the subvariety of HSP(B) defined by
equations that assert that all constants are equal. V is definitionally
equivalent to the variety of vector spaces over the same field as B, so
V is totally categorical. Any nontrivial C ≤ Bκ contains the constant
κ–termed sequences, hence C has a subuniverse U consisting of these
constants which generates a subalgebra isomorphic to B. U is closed
under the vector space operations, so U is a class of some congruence θ.
For any vector space congruence θ′ which complements θ in Con (C),
C/θ′ is isomorphic to B since U is a transversal for θ′. For any C ∈
SP(B) we have C ∼= B × (C/θ) where C/θ ∈ V. Since V is totally
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categorical, C is determined up to isomorphism by |C|, so SpecB(λ) ≤ 1
for all λ. �

Theorem 5.8. The algebra A is a G–algebra if and only if it is weakly
isomorphic to

(i) 〈G;λg, g ∈ G〉 (i.e., to the left–regular representation of G) or
(ii) the expansion by translations of a finite affine module over a

simple ring.

Proof. Our strategy will be to reduce this case to Case (ii) of Lemma 5.4.
The following fact is the basis for the reduction.

Claim 5.9. Aut (F) acts transitively on F .

Proof. A sequence f : ω → S is almost constant if for some s ∈ S we
have f(x) = s for all but finitely many x ∈ ω. Assume that A is a
G–algebra. Let C be the subalgebra of Aω whose universe is the set of
almost constant sequences. Since C is countably infinite, C ∼= F. Any
almost constant sequence of elements of Aut (A), acting coordinate-
wise, is an automorphism of C. The collection of such automorphisms
acts transitively on C, since Aut (A) acts transitively on A. �

Let A∗ be the expansion of A by a single constant and let Q∗ =
SP(A∗). The countably infinite members of Q∗ can all be obtained
from countably infinite members of Q by adjoining one constant. Any
two such algebras are isomorphic since Q is ℵ0-categorical and, accord-
ing to Claim 5.9, the countably infinite member of Q has a transitive
automorphism group. Therefore Q∗ is ℵ0-categorical. Choose an idem-
potent unary term e∗ which minimizes |e∗(A∗)|. Then, as argued before
Lemma 5.4, e∗(A∗) is a permutational algebra which generates the ℵ0-
categorical quasivariety e∗(Q∗). Moreover, e∗(A∗) falls into Case (ii)
of Lemma 5.4 since we obtained A∗ by adding a constant to A and the
transitive action of the unary terms of A guarantee that every element
of A is named by a constant in A∗. Therefore we are in a position to
use Theorem 5.7: we know that e∗(A∗) is polynomially equivalent to a
G-set or it is affine.

Claim 5.10. If e∗(A∗) is polynomially equivalent to a G–set, then A
is polynomially equivalent to a G–set. If e∗(A∗) is affine, then A is
affine.

Proof. Lemma 3.5 implies that A∗ ∼=w e
∗(A∗)[k] for some k. All quasi-

identities of the form

s(x̄, ū) = s(ȳ, v̄) =⇒ s(z̄, ū) = s(z̄, v̄)
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are true of unary algebras and the satisfaction of all such quasi-identities
is preserved by the formation of [k]–th powers, weak isomorphic im-
ages and reducts. It follows that A satisfies all such quasi-identities.
(An algebra satisfying all quasi-identities of this form is said to be
strongly abelian.) The fact that A is strongly abelian implies that
every surjective polynomial of A, p : Am → A, equals a term oper-
ation. For if p(x̄) = s(x̄, ā) with ā ∈ An, and s(c̄, ā) 6= s(c̄, b̄) for
some c̄ ∈ Am, b̄ ∈ An, then from the surjectivity of s(x̄, ā) we can
find d̄ ∈ Am such that s(d̄, ā) = s(c̄, b̄). Applying the displayed quasi-
identity, we get s(z̄, ā) = s(z̄, b̄) for any z̄ ∈ Am. This is a contradiction
for z̄ = c̄. We conclude that s(x̄, ū) is independent of ū when s(x̄, ā) is
surjective, so the polynomial p(x1, . . . , xm) equals the term operation
s(x1, . . . , xm, x1, . . . , x1).

A∗ ∼=w e∗(A∗)[k], so the algebra A∗ (and hence A) has a unary
polynomial b(x) whose [k]–th power representation is 〈p2, p3, . . . , pk, p1〉
where pi(x̄) ∈ Clo k(e

∗(A∗)) is projection onto the i–th variable. The
operation b(x) cyclically permutes the coordinates of any k–tuple. A∗

(hence A) has a k–ary polynomial d(x̄) whose [k]–th power represen-
tation is 〈p11, p22, . . . , pkk〉 where pii(x̄) ∈ Clo k2(e∗(A∗)) is projection
onto variable ii, viewing the k2 variables as arranged in a k × k array.
Since b and d are both surjective, they are term operations of A. Hence,
E(x) := d(x, bk−1(x), . . . , b(x)) is a unary term operation of A, and it
maps a k–tuple (a1, . . . , ak) ∈ Ak to (a1, . . . , a1). This term operation
must be a permutation or a constant, since A is permutational, so we
conclude that |A| = 1 (in which case the claim holds trivially) or else
k = 1. In the latter case, A∗ ≡ e∗(A∗) and we get that A∗ (hence A)
is polynomially equivalent to a G–set.

The last remark of the claim follows from the fact that affineness is
preserved by Morita equivalence and by polynomial equivalence. �

Now we continue the proof of the theorem. Claim 5.10 implies that
A is polynomially equivalent to a G–set or affine. In the first case A
is an essentially unary G–algebra, so it can only be 〈G;λg, g ∈ G〉.
In the second case, A is affine over a ring Morita equivalent (in the
classical sense) to a finite field. Since A is a G–algebra, Theorem 4.2
proves that A is weakly isomorphic to the expansion by translations of
a finite affine R–module where R is a finite simple ring.

Using an argument similar to that used in the proof of Theorem 5.7
it is easy to see that the quasivariety generated by B = 〈G;λg, g ∈ G〉
is categorical in every power in which it has a model; the models are
disjoint unions of copies of B. So what remains to be proven is that
the algebras described in Case (ii) generate categorical quasivarieties.
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Let C be a nontrivial algebra in P = SP(B) where B is the expansion
by translations of a finite affine module over a finite simple ring R.
Choose 0 ∈ C arbitrarily and let Ĉ denote the R–module which shares
the universe and idempotent operations of C, but has 0 as a constant
operation. Let G denote the group of translations of B. Since B is a
G–algebra, every nontrivial one–generated algebra in P is isomorphic
to B. In particular, the subalgebra of C generated by 0 is isomorphic to
B; this subalgebra corresponds to a submodule of Ĉ which we denote
M. The fact that P |= x − y + (g(y)) = g(x) for each g ∈ G implies
that the G–orbits in C are precisely the cosets of M. R is a finite
simple ring, so Ĉ has a submodule N which complements M. If θ and
θ′ are the congruences of Ĉ corresponding to M and N, then C/θ is
idempotent (since θ–classes equal G–orbits) and C/θ′ ∼= B (since the
subalgebra generated by 0 ∈ C is isomorphic to B and is a transversal
for θ′). We conclude that C ∼= B × (C/θ) where (C/θ) is an affine
R–module. Now (total) categoricity of P is a corollary of the (total)
categoricity of any quasivariety of affine modules over a finite simple
ring, which we proved in Theorem 5.6 (ii). �

Theorem 5.11. The algebra A is a G0–algebra if and only if it is
weakly isomorphic to

(i) 〈G ∪ {0}; 0, λg, g ∈ G〉 or
(ii) a finite one–dimensional vector space.

Proof. By simplifying arguments of the previous proof, one sees that
the algebras of types (i) and (ii) generate totally categorical quasiva-
rieties. To prove the other direction we first argue that [1, 1] = 0 in
Con (A). Since [1, 1] is a fully invariant congruence, it is worth saying
a few words now about fully invariant congruences on G0–algebras.

If H is a subgroup of G, then the relation θH defined by (a, b) ∈ θH
iff a = b = 0 or a and b lie in the same left coset of H is an equivalence
relation on A. Any congruence θ on A is compatible with all λg, and
this forces either θ = A×A or else θ = θH for some H < G. Any fully
invariant congruence θ on A is compatible with all ρg, and this forces
either θ = A × A or else θ = θM for some normal subgroup M � G.
An algebra of the form A/θM with M �G is a G0–algebra with group
equal to G/M . Since {0} is a congruence class of every θH , it follows
that there is a largest proper congruence θN on any G0–algebra. Since
any nonconstant endomorphism of a G0–algebra is an automorphism,
the largest proper congruence θN is fully invariant (so N �G).

Claim 5.12. [1, 1] < 1.
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Proof. Fix N � G such that θN is the largest proper congruence on
A. If the claim is false, then A/θN is a nonabelian simple G0–algebra
with respect to the group G/N . According to the structure theorem
for nonabelian simple G0–algebras (in [20]) there is a binary term x∧y
which is a meet semilattice operation on A/θN . The semilattice order
is that of a height–one semilattice with bottom element 0A/θN . Choose
1 ∈ A/θN − {0A/θN}; the polynomial E(x) = 1 ∧ x is an idempotent
polynomial with range {0A/θN , 1}, and x ∧ y restricts to this set to be
a meet semilattice operation with respect to the order 0A/θN < 1.

A has an idempotent polynomial e(x) such that e(x)/θN = E(x) and
e(A) = U is a 〈θN , 1〉–minimal set. U has two θN classes O and I such
that O/θN = 0G/N , I/θN = 1. According to Lemmas 4.15 and 4.17 of
[5], I is a one–element set. Since O is a θN |U–class that contains 0A,
and {0A} is a θN–class, we also have that O has size one. Thus |U | = 2.

Now we are in a position to repeat the argument from the proof
of Lemma 5.5: we have an algebra A which has a unary polynomial
e(x) such that U = e(A) has size two, and A has a polynomial that
restricts to U to be a semilattice operation. The conclusion is that
SpecA(λ) = 2λ for all infinite λ, which contradicts categoricity. �
Claim 5.13. If A/[1, 1] is not essentually unary, then [1, 1] = 0.

Proof. Since [1, 1] is a proper fully invariant congruence it has the form
θN for some N �G, and A/[1, 1] is a G0–algebra with respect to G/N .
By Theorem 4.3 we must have that A/[1, 1] is equivalent to a vector
space. Therefore there is a binary term s′ such that s′(x, y) ≡ x − y
(mod θN). If `(x) = s′(x, 0) ≡ x − 0 = x (mod θN ), then `(x) is
not constant. Since A is a G0–algebra, it must be that the term `
has an inverse. If s(x, y) = s′(`−1(x), y), then A |= s(x, 0) = x and
s(x, y) ≡ x − y (mod θN). Observe that if a ≡ b (mod θN) we have
that s(a, b) ≡ s(a, a) ≡ 0 (mod θN). But since {0} is a θN–class, this
means that s(a, b) = 0 in A.

Now we construct two nonisomorphic countable algebras in SP(A).
Let B countably infinite Boolean algebra. Let C = A[B]∗ viewed as
the algebra of continuous functions from the Stone space of B to A
given the discrete topology. Let θ denote the congruence on C which
relates two functions in C if they are [1, 1]-related pointwise. Let D
be the subalgebra of C consisting of functions which are θ–related to a
constant function. If [1, 1] > 0, then D is infinite. Since C is countably
infinite and SP(A) is ℵ0–categorical, to prove the claim it is enough to
prove that C 6∼= D.

Since C/θ = (A/[1, 1])[B]∗ is an infinite dimensional vector space,
it follows that the universal congruence C × C on C is not compact.
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However, the universal congruence on D is principal! To see this, choose
any a ∈ A − {0}. Let â ∈ D be the function with range {a} and let
0̂ be the function with range {0}. To finish the proof of the claim we
show that for any d ∈ D we have (0̂, d) ∈ Cg (0̂, â). Choose a constant

function b̂ such that d ≡ b̂ (mod θ). Without loss of generality d 6= 0̂,
so b 6= 0 and there is a λg such that λg(a) = b. Now

d = s(d, 0̂) = s(d, λg(0̂)) Cg (0̂, â) s(d, λg(â)) = s(d, b̂) = 0̂.

This proves that Cg (0̂, â) = D ×D, which completes the proof of the
claim. �
Claim 5.14. If A/[1, 1] is essentually unary, then [1, 1] = 0.

Proof. Assume that [1, 1] < 1 and that A/[1, 1] is essentially unary.
Choose 1 ∈ A− {0}. Let B be a countable atomless Boolean algebra.
The algebra X = A[B]∗ is countably infinite and has a wealth of auto-
morphisms. Let G0 = (Aut(A))[B]∗ acting pointwise on X = A[B]∗.
Elements of G0 suffice to show that any element of X is in the same
Aut(X)–orbit as a 0,1–sequence. Let G1 be the group consisting of au-
tomorphisms of X induced by automorphisms of B acting on the points
of its Stone space. Elements of G1 suffice to show that any two 0,1–
sequences in which both 0 and 1 appear belong to the same Aut(X)–
orbit. (This uses the fact that {bottom element}∪{middle elements}∪
{top element} is a partition of B into Aut(B)–orbits.) So, if we let
S0 = {0X}, S1 = the set of functions which do not have 0 in their
range, and S0,1 = the rest of X = the set of nonconstant functions that
have 0 in their range, then we see that X = S1 ∪S0,1∪S1 is a partition
of X into G0 ∨G1–orbits.

If f(x1, . . . , xn) depends only on its first variable modulo [1, 1] in A
and we apply it to elements ai ∈ X = A[B]∗, then a = f(a1, . . . , an) is
a function in A[B]∗ which is zero wherever a1 is zero. (This depends
on the fact that {0} is a [1, 1]–class in A.) Consequently the set Y =
S0 ∪ S0,1 is a (countably infinite) subuniverse of X. Since all elements
of G0∨G1 can be restricted to automorphisms of Y, there are only two
Aut(Y)–orbits: {0} and Y − {0}. This property is shared by F ∼= Y.
Now we are in a position to imitate the proof of Theorem 5.8.

If we expand A to A∗ by adding one nonzero constant, then SP(A∗)
is categorical and it is Morita equivalent to a quasivariety of the type
classified in Theorem 5.7. From this it follows that A is abelian, so
[1, 1] = 0. �

We know that [1, 1] = 0, or that A is abelian, so Theorem 4.3 com-
pletes the proof. �
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If one is satisfied with a description of ℵ0–categorical quasivarieties
up to Morita equivalence, then the combination of Theorems 5.6, 5.7,
5.8, 5.11 provides such a description. (More specifically, the theorem
statements describe the minimal generator of the quasivariety while the
theorem proofs describe the other models.) We now reformulate those
results in ways that avoid mentioning Morita equivalence.

Theorem 5.15. A quasivariety is ℵ0–categorical if and only if it is
minimal, locally finite and

(i) definitionally equivalent to some Q[k] where Q is a quasivariety
of G–sets, possibly with constants adjoined, where every non-
identity permutation has at most one fixed point, or

(ii) an affine quasivariety over a simple ring.

Proof. Case (i) follows directly from Theorems 5.6, 5.7, 5.8 and 5.11,
using Corollary 3.5 to understand Morita equivalence.

In Case (ii) of this theorem, we have already determined that the
Case (ii) quasivarieties in Theorems 5.6, 5.7, 5.8 and 5.11 are minimal,
locally finite and affine over a finite simple ring. These properties for
a quasivariety are Morita invariants. The only thing we have to show,
therefore, is that any minimal, locally finite, affine quasivariety over a
simple ring is ℵ0–categorical. In fact, we can finish the proof by doing
less; it will suffice to prove that each nonconstant unary term of such
a quasivariety is invertible in the sense of equation 2.1. For then we
can argue, as we did before Lemma 5.4, that any such quasivariety is
Morita equivalent to a permutational quasivariety. The permutational,
minimal, locally finite, affine quasivarieties over simple rings are pre-
cisely the Case (ii) quasivarieties that appear in Theorems 5.6, 5.7, 5.8
and 5.11, and in all four theorems we proved these quasivarieties to be
categorical.

Let Q be a minimal, locally finite, affine quasivariety over a simple
ring R. Let P = FQ(x) be the free algebra on {x}. Assume that P
is polynomially equivalent to the module M. If f(x) is a nonconstant
unary term of Q, then f is nonconstant on P. We may choose an
affine representation for P where 0 ∈ f(P ), and with respect to this
representation f is representable in the form f(x) = r(x) +m for some
nonzero r ∈ R. If f(P ) is a generating set for P, then by the argument
used in the last paragraph of Lemma 5.3 f is invertible and we are
done. So assume that f(P ) generates a proper subalgebra P′ of P. We
arranged the representation so that 0 ∈ P ′, so P ′ is a proper submodule
of M. Now the quotient module M/P ′ has the property that it is a
nontrivial R-module for which the polynomial r(x) + m̄ is identically
zero. But this is impossible if R is simple. For if r(x) + m̄ ≡ 0, then
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m̄ = r(0) + m̄ = 0 and so r(x) = r(x) + m̄ ≡ 0. That is, the nonzero
element r ∈ R acts like zero on the nontrivial module M/P ′. The same
holds for all ring elements r′ in the ideal generated by r, which is all of
R by simplicity. But this is impossible, since 1(x) = x on M/P ′. This
contradiction proves that nonconstant terms are invertible, and hence
finishes the proof. �

Now we re-express this theorem in a way that makes use of all the
information we gathered in Theorems 5.6, 5.7, 5.8, 5.11.

Theorem 5.16. Q is an ℵ0–categorical quasivariety if and only if Q
is definitionally equivalent to a locally finite quasivariety of one of the
following types.

(i) A [k]–th power of
(a) the quasivariety of sets,
(b) the quasivariety generated by the expansion by constants of

a faithful G–set where every g ∈ G− {1} has at most one
fixed point,

(c) the quasivariety of regular G–sets for some group G,
(d) the quasivariety of regular G–sets with zero for some group

G, or
(ii) An affine quasivariety of the following form:

(a) a quasivariety generated by a finite simple module under
all affine operations which pointwise fix a subspace,

(b) a quasivariety generated by an expansion by constants of a
finite module over a simple ring,

(c) a quasivariety generated by a finite module over a simple
ring under all affine operations which commute with the
translations by elements of a fixed subspace, or

(d) the quasivariety of modules over a simple ring.

Proof. The description of these cases follows from Theorems 5.6, 5.7,
5.8 and 5.11, using Theorem 4.1 and Corollary 3.5 to understand Morita
equivalence. �
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