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Abstract

In this paper we show that, if V is a residually small variety generated by an algebra
with n < ω elements, and A is a subdirectly irreducible algebra in V with restricted

type labeling, then |A| ≤ nnn
n+2

.

1 Introduction

The two fundamental representation theorems for varieties of algebras are the HSP Theorem
and the Subdirect Representation Theorem, both due to Birkhoff. The HSP Theorem states
that the variety generated by a class K of similar algebras is the smallest class of algebras
containing K which is closed under the formation of homomorphic images, subalgebras and
products. The proof of the HSP Theorem shows in fact that

V(K) = HSP(K).

That is, if one closes under products, then subalgebras and finally under the formation of
homomorphic images; then one obtains a class of algebra closed under all three constructions.
This shows that an arbitrary member of V(K) may be represented as B/θ where θ is a
congruence on B and B is a subalgebra of

∏
i∈I Ai, Ai ∈ K. Since B ≤ ∏i∈I Ai, B is simply

an algebra of vectors where, for each i, the values in the ith coordinate of a vector are from
some fixed Ai ∈ K. Therefore any member of V(K) may be considered to be an algebra of
equivalence classes of vectors with coordinate algebras from K. Now, while it may be fairly
easy to calculate coordinatewise with vectors, it is usually quite difficult to calculate with
equivalence classes of vectors. This difficulty is addressed by the Subdirect Representation
Theorem.

The Subdirect Representation Theorem states that any member of a variety V is iso-
morphic to a subdirect product of subdirectly irreducible members of V. This implies that
V = SP(Si) where Si is the class of subdirectly irreducible algebras in V. Where the HSP
Theorem represents the members of V = V(K) as algebras of equivalence classes of vectors,
the Subdirect Representation Theorem represents these algebras as algebras of vectors. The
latter representation is easier to work with, but it requires knowing the class of subdirectly
irreducible members of V. This leads naturally to the following problem: Given a class K
of similar algebras, describe the subdirectly irreducible members of V(K).
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In many cases, it is a hopeless task to describe the subdirectly irreducible members
of V(K), even when K is well-understood. The case when K = {A} consists of a single
finite algebra has received the most attention. Here the approach has been to prove general
theorems which either (i) show that V(A) has a proper class of subdirectly irreducibles or (ii)
produce a finite cardinality bound on the size of the subdirectly irreducible algebras in V(A).
Some theorems have been found which have a fairly general scope, but this type of approach
leads one to wonder if there are finite algebras A which fit into neither category. Indeed,
versions of the following conjecture concerning the distribution of subdirectly irreducible
algebras remained open for more than twenty years. (To explain the wording, a variety is
residually large if it has a proper class of isomorphism types of subdirectly irreducible
algebras. Otherwise it is residually small.)

The RS Conjecture: If A is a finite algebra and V(A) is residually small, then there is a
finite bound on the size of its subdirectly irreducible members.

The conjecture states that if A is finite and V(A) has some bound on the cardinality of its
subdirectly irreducible members, then it has a finite bound. This is sometimes expressed as,
‘If A is finite and V(A) is residually small, then V(A) is residually << ω.’

Attempts to prove the RS Conjecture led to a vigorous investigation of the combinatorics
of finite algebras which continues today. We are referring to what is called tame congruence
theory and [3] is the handbook of the theory. Tame congruence theory associates to each
covering pair of congruences a number from one to five. This number explains the local
behavior of polynomial operations with respect to the chosen congruences. The number is
called the type of the covering. The set of all numbers associated with a finite algebra A
is called the type-set of A and it is written typ{A}. We write typ{V(A)} to denote the
set of all type labels associated with finite members of V(A). In all cases the type-set of an
algebra or variety is a subset of {1, 2, 3, 4, 5}.

Although there are many papers classifying the residually small subvarieties of certain
well-known varieties, we mention only a few of the important results which led up to this
paper. Not all of these results were proved with tame congruence theory, but we state the
results in the language of tame congruence theory so that a comparison can be made.

(1967) Jónsson’s Lemma (see [4]) implies that the RS conjecture holds if typ{V(A)} ⊆ {3, 4}
and all minimal sets have empty tail.

(1981) The paper [1] by Freese & McKenzie proves, among other things, that the RS conjecture
holds if if typ{V(A)} ⊆ {2, 3, 4} and all minimal sets have empty tail.

(1983) Hobby & McKenzie prove that the RS conjecture holds if typ{V(A)} ⊆ {2, 3, 4}.

(1986) McKenzie proves that in a finitely generated residually small variety for which typ{V} ⊆
{1, 2, 3, 4} there is a finite cardinality bound which holds for all subdirectly irreducible
algebras whose monolith is of type 2, 3 or 4.

(1991) The author proves that in any finitely generated residually small variety there is a
finite cardinality bound which holds for all subdirectly irreducible algebras which omit
type 5 and whose monolith is of type 2, 3 or 4. This bound depends only on the size
of the generating algebra.
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This paper contains a proof of the last result. On the surface the statement of this result
seems to be a small improvement over the preceding two results, but it is the first result ob-
tained in this area which requires no global restriction on the variety. I.e., no type restrictions
on the variety are assumed.

The last two results on this list were not published at the time of their discovery. The
hope was that these ideas would form a part of an eventual proof of the RS Conjecture. How-
ever, in 1993, while attempting to extend the ideas from his 1986 proof, McKenzie discovered
a counterexample to the RS conjecture. Indeed, he went on to produce a sequence of even
more startling counterexamples until he announced that he could interpret the halting prob-
lem into the problem of determining if V(A) is residually << ω for finite A (see [7]). Thus
the class of finite algebras which generate varieties which are residually << ω is recursively
inseparable from the class of algebras which generate residually countable varieties which
are not residually << ω. Since then, McKenzie and Willard have shown that the class of
finite algebras which generate varieties which are residually << ω is recursively inseparable
from the class of algebras which generate residually large varieties. McKenzie has also shown
that, for a finite algebra A, if V(A) has a cardinality bound on its subdirectly irreducible
members, then that bound can be anything permitted by the early model-theoretic restric-
tions discovered by Taylor, [10], and McKenzie & Shelah, [9]. About the only conjecture in
this area that McKenzie did not solve negatively is the following one (which remains open).

Conjecture: If A is a finite algebra with finitely many basic operations and every
subdirectly irreducible algebra in V(A) is finite, then V(A) is residually << ω.

All of McKenzie’s new examples involve a heavy dependence on the pathology of type 5
quotients in finite algebras. It now seems the appropriate time to publish our positive results
on residual smallness, since it is now clear that good positive results cannot be obtained for
subdirectly irreducible algebras with type 5 quotients. Our theorem does give good positive
results for almost any subdirectly irreducible algebra which omits type 5. (In our main
theorem we permit all types other than 5, except we do not allow the monolith to have a
type 1 label.) It is still an intriguing question as to whether the RS Conjecture holds for
varieties with no type 5 quotients.

Throughout this paper we make free use of tame congruence theory. The reader is directed
to [3] for the terminology and results of the theory.

2 Large Subdirectly Irreducible Algebras

In this paper we are investigating finite algebras A for which there is a cardinality bound
on the size of subdirectly irreducible algebras in V(A) = HSP(A). We shall find it more
convenient to calculate in SP(A) rather than HSP(A). We need to be able to recognize from
the members of SP(A) whether or not there will be large subdirectly irreducible algebras
in HSP(A). Thus, rather than work with large subdirectly irreducible algebras directly, we
shall work with algebras which have large subdirectly irreducible homomorphic images. The
next lemma, which is a basic tool, gives a necessary and sufficient condition for an algebra
to have a large subdirectly irreducible homomorphic image.
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LEMMA 2.1 An algebra B has a subdirectly irreducible homomorphic image of cardinality
≥ κ if and only if there is a 4-tuple (a, b,X, γ) satisfying the following conditions.

(i) a, b ∈ B, X ⊆ B,

(ii) γ ∈ Con B and (a, b) 6∈ γ,

(iii) for every ψ ∈ Con B with ψ ≥ γ the following implication holds:

|X/(ψ|X)| < κ⇒ (a, b) ∈ ψ.

Proof. If B has a homomorphism onto a subdirectly irreducible of cardinality ≥ κ,
then choose γ to be the kernel of the homomorphism. Necessarily γ is completely meet-
irreducible. Let γ∗ denote the upper cover of γ. Choose a, b ∈ B so that (a, b) ∈ γ∗ − γ
and let X be any transversal for γ. Note that |X| = |A/γ| ≥ κ. Note also that the only
ψ ≥ γ for which (a, b) 6∈ ψ is ψ = γ and for this value of ψ we have ψ|X = 0X , since X is a
transversal for γ = ψ. Hence, for any ψ ≥ γ we have |X/(ψ|X)| < κ implies (a, b) ∈ ψ.

For the other direction, assume that there exists a 4-tuple (a, b,X, γ) satisfying the pre-
scribed conditions. Choose any ψ ≥ γ maximal for the property that (a, b) 6∈ ψ. The
maximality of ψ implies that B/ψ is subdirectly irreducible while condition (iii) of the
lemma guarantees that

|B/ψ| ≥ |X/(ψ|X)| ≥ κ.

Hence B has a subdirectly irreducible homomorphic image of cardinality ≥ κ.

In the rest of this paper, whenever we have to prove that a variety of the form V(A) has
a proper class of subdirectly irreducible algebras, we shall find it sufficient to produce for
each κ an algebra Bκ ∈ SP(A) which has a 4-tuple (a, b,X, γ) satisfying conditions (i)−(iii)
of Lemma 2.1.

3 Generalizing Jónsson’s Lemma

Our goal in this section is to extend Jónsson’s Lemma to arbitrary finitely generated, resid-
ually small varieties. The classical version of Jónsson’s Lemma for finitely generated, con-
gruence distributive varieties is:

LEMMA 3.1 (Jónsson’s Lemma [4]) Let K be a finite set of finite algebras such that V(K)
is congruence distributive. If A ∈ V(K) is subdirectly irreducible, then A ∈ HS(K).

A generalization of this lemma to congruence modular varieties appears in [2]. A version
of that result for finitely generated, congruence modular varieties is the following. (In this
statement (0 : µ) denotes the largest congruence θ such that [θ, µ] = 0.)

LEMMA 3.2 Let K be a finite set of finite algebras such that V(K) is congruence modular.
If A ∈ V(K) is a finite subdirectly irreducible with monolith µ, then A/(0 : µ) ∈ HS(K).
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The Jónsson’s-type lemma that we shall prove in this section is

LEMMA 3.3 Let K be a finite set of finite algebras. Assume that V(K) is residually small.
If A ∈ V(K) is a finite subdirectly irreducible with monolith µ and

(i) 5 6∈ typ{A},

(ii) typ(0, µ) 6= 1;

then A/(0 : µ) ∈ HS(K).

The following result is a first step to proving our Jónsson’s-type lemma.

LEMMA 3.4 Let A be a finite algebra which has congruences δ ≺ θ and ηi, i < n, such
that

∧
i<n ηi ≤ δ. If typ(δ, θ) ∈ {2, 3, 4}, then C(θ, ηi; δ) holds for some i.

Proof. What we actually prove is that if typ(δ, θ) ∈ {2, 3, 4} and η is any congruence
on A where N2 6⊆ (η ∪ δ) for some 〈δ, θ〉-trace N , then C(θ, η; δ) holds. This will suffice to
prove the lemma as we now explain. If N is a 〈δ, θ〉-trace, (u, v) ∈ N 2 − δ and

∧
i<n ηi ≤ δ;

then (u, v) 6∈ ηi must hold for some i. Thus (u, v) ∈ N 2 − (ηi ∪ δ) for some i. Proving that
N2 6⊆ (η ∪ δ) implies C(θ, η; δ) will establish the lemma.

Assume that N 2 6⊆ (η ∪ δ) for some N and some η. Choose U ∈ MA(δ, θ) containing N
and choose (u, v) ∈ N 2 − (η ∪ δ). Assume that C(θ, η; δ) fails. Then, since θ = Cg(u, v)∨ δ,
C({(u, v)}, η; δ) fails too. Therefore, there is a polynomial p(x, ȳ) ∈ Polm+1A and elements
(aj, bj) ∈ η such that

p(u, ā) δ p(u, b̄)

while
g = p(v, ā) θ − δ p(v, b̄) = h

(or else the same statement holds with u and v switched). All four of the elements in
these two equations belong to the same θ-class. Choose f ∈ Pol1A such that f(A) ⊆ U
and (f(g), f(h)) 6∈ δ. Composing f with p we may assume p(Am+1) ⊆ U and there-
fore that the four elements of the previous displayed equations all belong to the body of
U . If typ(δ, θ) ∈ {3, 4}, then the four elements in the last two displayed equations are
among the two distinct elements of the body of U and these elements are u and v. Hence
{p(v, ā), p(v, b̄)} = {u, v}. But (p(v, ā), p(v, b̄)) ∈ η while (u, v) 6∈ η. This contradiction
shows that typ(δ, θ) 6∈ {3, 4} if C(θ, η; δ) fails. We are forced to conclude that typ(δ, θ) = 2.
Let d(x, y, z) be a pseudo-Mal’cev polynomial of U . We may assume that d(A3) ⊆ U . Let
q(x, ȳ) = d(p(x, ȳ), p(x, b̄), p(v, b̄)). Then

q(u, b̄) = p(v, b̄) = q(v, b̄)

while
q(u, ā) δ p(v, b̄) θ − δ p(v, ā) = q(v, ā).
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All elements in these equations belong to the body of U . Now define a polynomial r(x, ȳ) =
d(q(x, ȳ), q(u, ȳ), q(u, b̄)). We have

r(u, b̄) = q(u, b̄) = r(v, b̄)

while
r(u, ā) = q(u, b̄) δ q(u, ā) θ − δ q(v, ā) δ r(v, ā).

Since r(θ|U , ā) 6⊆ δ|U , r(x, ā) is a permutation of U . Let r−1
ā be a polynomial inverse to

r(x, ā) on U . Then we have

u = r−1
ā r(u, ā) = r−1

ā r(u, b̄) = r−1
ā r(v, b̄)

while r−1
ā r(v, ā) = v. In particular, (u, v) = (r−1

ā r(v, b̄), r−1
ā r(v, ā)) ∈ η. Again we face the

same contradiction: u and v were chosen so that (u, v) 6∈ η. This contradiction proves the
lemma.

It will be worth our while to show now how Lemma 3.4 can be used to prove the finitely
generated version of the classical Jónsson’s Lemma as well as its generalization to congruence
modular varieties. This will suggest what further work is necessary in order to establish our
Jónsson’s-type lemma.

Proof of Lemmas 3.1 and 3.2. Let A be a finite subdirectly irreducible in V(K).
Then A may be represented as B/δ where B is a subalgebra of some finite product

∏
j<nCj,

Cj ∈ K, and δ is a congruence on B. Let ηi be the congruence on B which is the restriction
to B of the kernel of the ith projection πi :

∏
j<n Cj → Ci. Since B is embedded in

∏
j<n Cj

we have
∧
i<n ηi = 0 ≤ δ. Since B/δ ∼= A is subdirectly irreducible, δ has a unique upper

cover in Con B which we label θ. In Lemmas 3.1 and 3.2 we are in a congruence modular
variety, so by Theorem 8.5 of [3] we must have typ(δ, θ) ∈ {2, 3, 4}. Now we may use Lemma
3.4 to conclude that for some i we have C(θ, ηi; δ).

In a congruence modular variety the centralizer relation is symmetric in its first two
variables. In fact, in a congruence modular variety we have

C(θ, ηi; δ) ⇔ [θ, ηi] ≤ δ
⇔ [ηi, θ] ≤ δ
⇔ C(ηi, θ; δ).

These bi-implications are proved in Chapter 4 of [2]. Thus, from C(θ, ηi; δ) we deduce that
ηi ≤ (δ : θ). From the Second Isomorphism Theorem we have

B/(δ : θ) ∈ H(B/ηi) ⊆ HS(Ci) ⊆ HS(K).

If µ is the monolith of A, then (since θ/δ is the monolith of B/δ ∼= A) we have A/(0 : µ) ∼=
B/(δ : θ). Hence A/(0 : µ) ∈ HS(K) which proves Lemma 3.2.

In Jónsson’s Lemma, we even have that V(K) is congruence distributive. As is shown in
Exercise 1 of Chapter 8 of [2], the commutator equal the intersection in this case, so (0 : µ)
= 0 in A. Thus

A ∼= A/(0 : µ) ∈ HS(K).
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This proves that every finite subdirectly irreducible in V(K) is contained in HS(K). But,
this imposes a finite cardinality bound on the finitely generated subdirectly irreducibles in
V(K). By Lemma 10.2 of [2], V(K) has no infinite subdirectly irreducibles. Thus every
subdirectly irreducible member of V(K) is contained in HS(K). This proves Lemma 3.1.

Looking over the proof of Lemma 3.2 we find that there are exactly two places where
we used the assumption that V(K) is congruence modular. We first used it to deduce that
typ(δ, θ) ∈ {2, 3, 4}. We later used it to deduce from C(θ, ηi; δ) that C(ηi, θ; δ) holds. This
indicates that most of this proof works without any modularity assumption if

(i) We restrict our attention only to subdirectly irreducible algebras A where typ(0, µ) ∈
{2, 3, 4} (since typ(0, µ) = typ(δ, θ) in the above proof), and

(ii) we find some other way to deduce from C(θ, ηi; δ) that that C(ηi, θ; δ) holds.

This is what we intend to do. We shall outline our strategy for the proof of Lemma 3.3 in
the next few paragraphs using the notation of the previous proof.

The precise relationship between C(θ, η; δ) and C(η, θ; δ) when η, θ and δ are congruences
on a finite algebra and δ ≺ θ is explained in [6]. The following result is proved there.

THEOREM 3.5 Assume that η, θ and δ are congruences on a finite algebra A, δ ≺ θ and
typ(δ, θ) ∈ {2, 3, 4}. Assume that U ∈ MA(δ, θ) has body B and tail T . The following
conditions are equivalent.

(i) C(η, θ; δ)

(ii) C(θ, η; δ) and η|U ⊆ B2 ∪ T 2

(iii) C(θ, η; δ) and η
s∼ η ∧ (δ : θ).

(This theorem is a combination of lemmas and remarks from [6].)
Now, in the argument which we used to prove the finitely generated version of Jónsson’s

Lemma and Lemma 3.2 we are guaranteed by Lemma 3.4 that in Con B it is the case that
C(θ, ηi; δ) holds for some i. Furthermore, from C(ηi, θ; δ) one can finish the proof of each
lemma. To prove our Jónsson’s-type lemma, let us analyze situations where C(θ, η; δ) holds
for some η while C(η, θ; δ) fails.

The assumption that C(η, θ; δ) fails is equivalent to η 6≤ (δ : θ). Hence there are α, β ∈
Con B such that α ≺ β ≤ η, α ≤ (δ : θ) and β 6≤ (δ : θ). (Any such pair will do, but a specific
α which works is α = η∧ (δ : θ) and for this α we may take β to be any congruence for which
α ≺ β ≤ η.) Figure 1 illustrates the order relationship between all the congruences of Con B
mentioned so far. (Figure 1 is plausible when typ(δ, θ) = 2, but when typ(δ, θ) ∈ {3, 4} we
must lower (δ : θ), α and β so that (δ : θ) = δ.)
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Figure 1: Con B

Since β ≤ η we get that C(θ, β; δ) holds. We cannot have C(β, θ; δ), since β 6≤ (δ : θ). By
Theorem 3.5 we find that β 6 s∼β ∧ (δ : θ) = α. Hence, typ(α, β) ∈ {3, 4, 5}. Note that 〈α, β〉
is perspective with some prime quotient in the interval I[(δ : θ), 1], hence with some prime
quotient 〈σ, ρ〉 in I[δ, 1]. But since B/δ ∼= A, we get that

typ(α, β) = typ(σ, ρ) ∈ typ{δ, 1} ⊆ typ{A} ⊆ {1, 2, 3, 4}.
It follows that typ(α, β) ∈ {3, 4}. We summarize what we know about Con B so far (as-
suming the hypotheses of Lemma 3.3 and that C(θ, η; δ) holds while C(η, θ; δ) fails).

(i) typ(δ, θ) ∈ {2, 3, 4},
(ii) typ(α, β) ∈ {3, 4} and

(iii) C(θ, η; δ).

In the rest of this section we shall prove that these three conditions permit the construction
of a proper class of subdirectly irreducible algebras in V(B) ⊆ V(K). As this is contrary
to our hypothesis in Lemma 3.3, we shall be able to conclude that with the hypotheses of
Lemma 3.3 we have

C(θ, η; δ)⇒ C(η, θ; δ).

We can then finish the proof of Lemma 3.3 in the same way that we finished the proofs of
Lemmas 3.1 and 3.2.

Let {0, 1} be an 〈α, β〉-trace. Since typ(α, β) ∈ {3, 4} we have that B|{0,1} is a minimal
algebra of type 3 or 4. Furthermore, since (0, 1) ∈ η, we get that C(θ, {0, 1}2; δ) holds.
Finally,

(0, 1) ∈ β − α = β − (δ : θ),

so (0, 1) 6∈ (δ : θ) and in particular (0, 1) 6∈ δ (⊆ (δ : θ)).
The next two theorems indicate why this situation is impossible in a residually small

variety. We maintain the notation of our discussion above.
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THEOREM 3.6 Let B be a finite algebra which has congruences δ ≺ θ with δ a meet-
irreducible congruence. Assume that B has a pair of elements (0, 1) 6∈ δ and that the
following conditions hold.

(i) B|{0,1} is a minimal algebra of type 3 or 4,

(ii) typ(δ, θ) = 2 and

(iii) C(θ, {0, 1}2; δ).

Then V(B) is residually large.

Proof. We shall only prove the case of the theorem where δ = 0. For if we factor by
δ, the hypotheses remain unaffected and our proof will apply in this case. This will prove
that V(B/δ) is residually large, and therefore that V(B) is residually large.

B/δ ∼= A, according to our established notation, and θ/δ corresponds to µ; so we need
to prove the following. If

(i) A|{0,1} is a minimal algebra of type 3 or 4,

(ii) typ(0, µ) = 2 and

(iii) C(µ, {0, 1}2; 0);

then V(A) is residually large.
Note that (0, 1) 6∈ µ since 〈0, 1〉 is a 2-snag and typ(0, µ) = 2. Hence Cg(0, 1) > µ. We

are now in precisely the situation of Lemma 10.2 of [3]. In first two paragraphs of Lemma
10.2 of [3], Hobby and McKenzie reduce the hypotheses of their lemma to three statements.
Those statements are precisely the three conditions we have enumerated in the last paragraph
along with Cg(0, 1) > µ. Their proof shows how to construct a proper class of subdirectly
irreducible algebras in V(A), so our work has been done for us.

THEOREM 3.7 Let B be a finite algebra which has congruences δ ≺ θ with δ a meet-
irreducible congruence. Assume that B has a pair of elements (0, 1) 6∈ δ and that the
following conditions hold.

(i) B|{0,1} is a minimal algebra of type 3 or 4,

(ii) typ(δ, θ) ∈ {3, 4} and

(iii) C(θ, {0, 1}2; δ).

Then V(B) is residually large.

Proof. As in the last theorem, it suffices to work in A. Therefore, we replace B by
A, δ by 0 and θ by µ. Choose U ∈ MA(0, µ) and let B and T be the body and tail of U
respectively. Choose e ∈ E(A) such that e(A) = U . To further set notation for this proof
let B = {u, z} and let x ∨ y and x ∧ y denote the pseudo-join and pseudo-meet polynomials
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of A|U with respect to the ordering z < u. Let q, p ∈ Pol2A be lattice polynomials on {0, 1}.
Say, q(0, 0) = q(1, 0) = q(0, 1) = 0 = p(0, 0) and q(1, 1) = 1 = p(0, 1) = p(1, 0) = p(1, 1).

Since (u, z) ∈ µ ≤ Cg(0, 1), we get µ|U ≤ Cg(0, 1)|U and so there is a polynomial
f ∈ Pol1A such that ef(0) = u 6= ef(1) or else ef(1) = u 6= ef(0). Both arguments
are symmetric, so we assume that ef(0) = u 6= ef(1). (Incidentally, the symmetry of
these two arguments follows from the fact that A|{0,1} has both meet and join polynomials.
It would not be enough in our argument for A|{0,1} to have a binary semilattice polyno-
mial.) The fact that C(µ, {0, 1}2; 0) holds implies that C({u, z}2, {ef(0), ef(1)}2; 0) holds
and C({u, z}2, {u, z}2; 0) does not hold. Hence ef(1) ∈ U − B = T . Let v = ef(1). Let w
= z ∧ v. Note that

w = z ∧ v µ u ∧ v = v.

Since v ∈ T we have (v, w) ∈ µ|T = 0T , that is v = w.
Now we begin a construction which shows that V(A) is residually large, contrary to our

hypothesis. We define certain elements of Aκ: 0i is the element (cj)j<κ ∈ Aκ where cj = 0
for all j 6= i and ci = 1. ui is the element (cj)j<κ ∈ Aκ where cj = u for all j 6= i and ci
= v. zi is the element (cj)j<κ ∈ Aκ where cj = z for all j 6= i and ci = v. If x ∈ A, we
write x̂ to denote the element (cj)j<κ ∈ Aκ with cj = x for all j. If g(x̄) ∈ Pol A, and
g(x̄) = tA(x̄, a0, . . . , an) for some term t and some ai ∈ A, then we will write ĝ(x̄) to denote
the polynomial of Aκ which is equal to tA

κ
(x̄, â0, . . . , ân). Let C be the subalgebra of Aκ

generated by all elements of the form x̂, x ∈ A, and all elements of the form 0i, i < κ. The
universe of C contains all elements of the form ui (= êf̂(0i)) and zi (= ẑ∧̂ui). Let a = û, b
= ẑ, X = {0i| i < κ} and define

γ = CgC({(ui, zi)| i < κ}).

We claim that (a, b,X, γ) is a 4-tuple which witnesses the fact that C has a subdirectly
irreducible homomorphic image of cardinality ≥ κ.

In this paragraph we show that if ψ ≥ γ and |X/(ψ|X)| < κ, then (a, b) ∈ ψ. If
|X/(ψ|X)| < κ, then we must have (0i, 0j) ∈ ψ for some i 6= j. Then

0i = q̂(0i, 0i) ψ q̂(0i, 0j) = 0̂.

Thus
(ui, û) = (êf̂(0i), êf̂(0̂)) ∈ ψ.

This implies that
(zi, ẑ) = (ẑ∧̂ui, ẑ∧̂û) ∈ ψ.

Finally we get that
a = û ψ ui γ zi ψ ẑ = b.

To finish the proof we must show that (a, b) 6∈ γ. Assume instead that (a, b) = (û, ẑ) ∈ γ.
Then there is a Mal’cev chain û = x0, . . . , xk = ẑ. We may apply ê to every element of this
chain and obtain another such chain, so assume that each xi is a member Uκ. We may of
course assume that x0 6= x1. Let’s show that this leads to a contradiction. Since {x0, x1} =
{r(ui), r(zi)} for some r ∈ Pol1C satisfying r(C) ⊆ Uκ and x0 = û, it will suffice to prove
that

r(ui) = û⇔ r(zi) = û.

10



Both directions of this bi-implication can be proved with the same arguments, so assume
that r(zi) = û. For some s(x, ȳ) ∈ Polm+1A we may write r(x) = ŝ(x, 0i0, . . . , 0im−1). Choose
any j, k < κ. We have r(zi) = û, so

(r(zi))j = s((zi)j, ḡ) = u = s((zi)k, h̄) = (r(zi))k

where ḡ, h̄ ∈ {0, 1}m But zi = ẑ∧̂ui = ẑ∧̂êf̂(0i). Hence we can rewrite the last displayed
equation as

s(z ∧ ef((0i)j), ḡ) = u = s(z ∧ ef((0i)k), h̄).

Since C(µ, {0, 1}2; 0) holds, we get that

s(u ∧ ef((0i)j), ḡ) = s(u ∧ ef((0i)k), h̄).

This holds for all j, k < κ. Working backwards now and using û∧̂êf̂(0i) = û∧̂ui = ui, we
get that

(r(ui))j = (r(ui))k

for all j, k < κ. Hence r(ui) = d̂ for some d ∈ U . That is (r(zi), r(ui)) = (û, d̂). In the ith
coordinate this says that (for some ō ∈ {0, 1}m)

u = (r(zi))i = s(v, ō) = (r(ui))i = d.

This shows that r(zi) = û = d̂ = r(ui) as we claimed. Our conclusion is that (a, b) =
(û, ẑ) 6∈ γ. It follows that V(A) is residually large. Since V(A) ⊆ V(B) we are done.

Proof of Lemma 3.3. In our remarks following Theorem 3.5 we assume that K is
a finite set of finite algebras and A ∈ V(K) is a finite subdirectly irreducible algebra with
monolith µ. We showed that if A/(0 : µ) 6∈ HS(K), then there exist a non-abelian prime
quotient 〈α, β〉 as depicted in Figure 1. If typ(α, β) = 5, we argued that 5 ∈ typ{A}. If
typ(α, β) ∈ {3, 4}, then Theorems 3.6 and 3.7 prove that V(A) is residually large. This
concludes the proof.

4 A Property of (0 : µ)

In this section we prove that if A is a finite subdirectly irreducible algebra contained in a
residually small variety and µ is the monolith of A where typ(0, µ) = 2, then (0 : µ) is
abelian.

LEMMA 4.1 Assume that A is finite, that A has a prime quotient 〈δ, θ〉 of type 2 and
that U ∈ MA(δ, θ) has body B and tail T . Then (δ : θ)|U ⊆ B2 ∪ T 2. Further, B is a single
(δ : θ)|U -class.
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Proof. The first statement follows from Theorem 3.5 (i) ⇒ (ii) with η = (δ : θ). For
the second statement, the argument of Lemma 4.2 of [6] proves that (δ : θ) is the largest
congruence γ on A such that C(γ, θ|U ; δ) holds. Since A|B is nilpotent and δ|U ≺ θ|U we get
that C(Cg(B2), θ|U ; δ) holds, so B2 ⊆ (δ : θ)|U .

One consequence of Lemma 4.1 is that both C((δ : θ), θ; δ) and C(θ, (δ : θ); δ) hold when
typ(δ, θ) = 2. The first follows from the definition of (δ : θ) while the second follows from
(δ : θ)|U ⊆ B2 ∪ T 2 and Theorem 3.5

THEOREM 4.2 Assume that A is a finite algebra with congruences δ ≺ θ where δ is
meet-irreducible and typ(δ, θ) = 2. Assume also that V(A) is residually small. For any
α, β ∈ Con A we have

(C(α, θ; δ) & C(θ, β; δ))⇒ C(α, β; δ).

Proof. C(α, ψ; δ) ⇔ C(α ∨ δ, ψ; δ) for any ψ, so we lose no generality by assuming
that α ≥ δ. Now each of the congruences in question lie above β ∧ δ, so factoring by this
congruence we may assume that β∧δ = 0. Let us assume that C(α, θ; δ) and C(θ, β; δ) hold,
but that C(α, β; δ) fails. Then C(α, β; 0) fails, too, since for any three congruences it is true
that

C(α, β; β ∧ δ)⇒ C(α, β; δ).

Let [α, β] denote the least congruence χ such that C(α, β;χ). From what we have said and
the properties of the centralizer relation, 0 < [α, β] ≤ α∧β. We proceed to argue that V(A)
is residually large.

Since C(α, β; 0) fails, for some p ∈ Poln+1A and some pairs (0, 1) ∈ α and (ri, si) ∈ β we
have

p(0, r̄) = p(0, s̄)

while
g = p(1, r̄) [α, β]− 0A p(1, s̄) = h.

Choose a minimal set U ∈ MA(δ, θ), a trace N ⊆ U and a pair (u, v) ∈ N 2 − δ. Since
(g, h) ∈ [α, β] ≤ β and g 6= h, we cannot have (g, h) ∈ δ. As δ is meet-irreducible, this
implies that (u, v) ∈ Cg(g, h) ∨ δ. There is a Mal’cev chain u = x0, . . . , xn = v where for
each i < n we have {xi, xi+1} = {pi(g), pi(h)} or (xi, xi+1) ∈ δ. Pick e ∈ E(A) so that
e(A) = U . If we apply e to the chain x0, . . . , xn, we get another such chain contained in U .
In fact, the chain is contained completely inside the body of U since

(Cg(g, h) ∨ δ)|U = Cg(g, h)|U ∨ δ|U
≤ [α, β]|U ∨ δ|U
≤ α|U ∨ δ|U
≤ (δ : θ)|U
⊆ B2 ∪ T 2

where B is the body of U and T is the tail. (u, v) 6∈ δ by choice, so there is an i such that
epi(g) 6= epi(h) and both elements belong to the body of U . If we apply epi to both of
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the two displayed equations above which witness a failure of C(α, β; 0), then we see that no
generality is lost in assuming that p(A,An) ⊆ U and that all four elements in the previous
displayed equations belong to B. We make this assumption.

Let d(x, y, z) be a pseudo-Mal’cev polynomial of U . We assume that d(x, y, z) = ed(x, y, z)
so that the range of d is contained in U . Define p′(x, ȳ) = d(p(x, ȳ), p(x, s̄), p(1, s̄)). Using
the previous displayed equations and the fact that d is Mal’cev on B we find that

p′(0, s̄) = p(1, s̄) = p′(1, s̄)

and
p′(0, r̄) = p(1, s̄) 6= p(1, r̄) = p′(1, r̄).

Let us set l = p′(0, r̄) = p′(0, s̄) = p′(1, s̄) and m = p′(1, r̄). Both l and m belong to B and
(l, m) ∈ [α, β]− 0A. Hence (l, m) 6∈ δ just as we argued for the pair (g, h). From this and
the fact that A|B is Mal’cev, we get that

(u, v) ∈ θ|B ≤ Cg(l, m)|B ◦ δ|U .
Hence there is a w ∈ B such that (u, w) ∈ Cg(l, m)|B and (v, w) ∈ δ|B. Since A|B is Mal’cev
and (u, w) ∈ Cg(l, m)|B there is a polynomial f ∈ Pol1A|B such that f(l) = u and f(m) = w.
Let q(x, ȳ) = fp′(x, ȳ). Finally we have

q(0, r̄) = q(0, s̄) = q(1, s̄) = u

and
q(1, r̄) = w.

This prepares us to construct algebras in V(A) having 4-tuples (a, b,X, γ) witnessing the
fact that V(A) is residually ≥ κ for any cardinal κ.

Let C be the subalgebra of Aκ × Aκ whose universe consists of all tuples (c0j , c1j)j<κ
with the properties that

(i) there is a c ∈ A such that cij = c for and all but finitely many pairs (i, j), i = 0 or 1
and j < κ, and

(ii) c00 β c0j α c1j for all j < κ.

Pictorially, C is the subalgebra of all “almost constant combs” (see Figure 2) in Aκ ×Aκ.

t t t t
t t t t

α α α α

β β β β

c10 c11 c12 c13

c00 c01 c02 c03
· · ·

Figure 2: The “comb” (c0j , c1j)j<κ

We will use the notation uk, k < κ, to denote the element (c0j, c1j)j<κ ∈ C where cij =
u whenever (i, j) 6= (1, k) while c1k = w. We will use the notation 0k to denote the element
(c0j , c1j)j<κ ∈ C where cij = 0 whenever (i, j) 6= (1, k) while c1k = 1. For example, u2 is the
comb pictured in Figure 3 and 02 is the comb pictured in Figure 4.
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t t t t
t t t t

u u w u

u u u u
· · ·

Figure 3: The comb u2

t t t t
t t t t

0 0 1 0

0 0 0 0
· · ·

Figure 4: The comb 02

For m < n we will use the notation skm to denote the element (c0j , c1j)j<κ ∈ C where
cij = sm whenever j 6= k while c0k = c1k = rm. Notice that there is a difference in the
0k-coordinate from the way we defined uk and 0k. As an example, s2

m is the comb in Figure
5.

t t t t
t t t t

sm sm rm sm

sm sm rm sm
· · ·

Figure 5: The comb s2
m

Since (u, w) ∈ θ ≤ α, (0, 1) ∈ α, (ri, si) ∈ β, all elements of the form ui, 0i and sim belong
to C. We use the notation û to denote the comb (c0j , c1j)j<κ where cij = u for all i and
j. Let a = û and let b = u0. Let X = {0i|i < κ}. Let γ = CgC({(ui, uj) ∈ C2|i, j < κ}).
We now argue that (a, b,X, γ) is a 4-tuple which witnesses the fact that C has subdirectly
irreducible homomorphic image of cardinality ≥ κ.

In this paragraph we establish that if ψ ≥ γ and |X/(ψ|X)| < κ, then (a, b) ∈ ψ. Assume
that ψ ≥ γ and that |X/(ψ|X)| < κ. Since

|X| = |{0i|i < κ}| = κ,

it must be that (0i, 0j) ∈ ψ for some i 6= j. Let s̄j = (sj0, s
j
1, . . . , s

j
n−1). Then the equalities

established for q above guarantee that

a = û = q̂(0i, s̄j) ψ q̂(0j, s̄j) = uj γ u0 = b.

Thus, (a, b) ∈ ψ.
It remains to show that (a, b) 6∈ γ. If this were not so, then we could find a Mal’cev chain

a = û = x0, . . . , xm−1 = u0 = b
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where for each i we have (xi, xi+1) = (pi(u
j), pi(u

k)) with pi ∈ Pol1C, j, k < κ. If we apply
ê to the elements of this chain, we obtain another chain where all elements are among the
elements of Nκ × Nκ. (Recall that e ∈ E(A) was chosen above so that e(A) = U . Since
γ ≤ θ2κ, all elements of the chain are θ2κ-related to û and they belong to Uκ.) Let +,−, u
be abelian group polynomials of A|N . We shall show by induction that, for each i < m, if
xi = (c0j, c1j)j<κ in the previously displayed Mal’cev chain, then

Σj<κc1j δ u.

Here the sum is taken in N . (An inductive argument shows that for any xi all but finitely
many of the c1j are equal to u, so the sum of all c1j is at least defined.) The case when
i = 0 is trivial since x0 = û. Hence we will finish our inductive proof by showing that if xi
= (c0j , c1j)j<κ and xi+1 = (c′0j , c

′
1j)j<κ, then

Σj<κc1j δ Σj<κc
′
1j .

Since (xi, xi+1) = (pi(u
j), pi(u

k)) and pi(x) = t̂(x, ā) for some polynomial t ∈ Poll+1A satis-
fying t(A,Al) ⊆ U and some tuple ā ∈ C l, we can write

xi = t̂(uj, a1, . . . , al)

and
xi+1 = t̂(uk, a1, . . . , al).

But uj and uk are equal at all coordinates other than the 1jth and 1kth. The same is true
therefore of xi and xi+1. Thus, it suffices to show that

(xi)1j + (xi)1k δ (xi+1)1j + (xi+1)1k

or more specifically that

d((xi)1j, (xi+1)1j , (xi)1k) δ (xi+1)1k.

We are using the fact that d(x, y, z) = x − y + z for elements x, y, z ∈ N . Assume instead
that

d((xi)1j , (xi+1)1j , (xi)1k) 6δ (xi+1)1k.

Written in another way, this is

d(t(w, ā1j), t(u, ā1j), t(u, ā1k)) 6δ t(w, ā1k) = d(t(w, ā1j), t(w, ā1j), t(w, ā1k)).

Changing all occurrences of ā1j to ā0j and ā1k to ā0k and using the facts that C(α, θ; δ) and
that for each i we have ((ai)0j , (ai)1j), ((ai)0k, (ai)1k) ∈ α we get that

d(t(w, ā0j), t(u, ā0j), t(u, ā0k)) 6δ d(t(w, ā0j), t(w, ā0j), t(w, ā0k)).

Observe that since, say, t(w, ā1j) ∈ B, t(w, ā0j) ∈ U and ((ai)0j , (ai)1j) ∈ α, we even have
t(w, ā0j) ∈ B. Here we are using that α|U ≤ (δ : θ)|U ⊆ B2 ∪ T 2. This argument shows that
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t(w, ā0j), t(w, ā0k), t(u, ā0j) and t(u, ā0k) all belong to B. Since d is Mal’cev on B this leads
to

d(t(w, ā0j), t(u, ā0j), t(u, ā0j)) = d(t(w, ā0j), t(w, ā0j), t(w, ā0j)).

Define z(x, ȳ) = d(t(w, ā0j), t(x, ā0j), t(x, ȳ)). Here is a summary of our knowledge of z:

z(u, ā0j) = z(w, ā0j)

while
z(u, ā0k) 6δ z(w, ā0k)

and all four elements belong toB. Define z′(x, ȳ) = d(z(x, ȳ), z(w, ȳ), z(w, ā0k)). We compute
that

z′(w, ā0j) = z(w, ā0k) = z′(w, ā0k)

while
z′(u, ā0j) = z(w, ā0k) 6δ z(u, ā0k) = z′(u, ā0k).

But for each i < l we have ((ai)0j, (ai)0k) ∈ β, so this is a failure of C(θ, β; δ). This
contradiction invalidates our assumption that

d((xi)1j , (xi+1)1j , (xi)1k) 6δ (xi+1)1k.

We conclude that
(xi)1j + (xi)1k δ (xi+1)1j + (xi+1)1k.

By induction we find that for any i < m, if xi = (c0j , c1j)j<κ, then

Σj<κc1j δ u.

In particular, this must hold for xm−1 = u0. But u0 = (c0j, c1j)j<κ where all cij = u except
c10 = w. It follows that for xm−1 = u0 we have

Σj<κc1j = w δ v 6δ u.

This is a contradiction to our assumption that (a, b) ∈ γ. In other words, (a, b) 6∈ γ as we
claimed and the proof is finished.

COROLLARY 4.3 Assume that A is a finite subdirectly irreducible algebra with monolith
µ and that typ(0, µ) = 2. If (0 : µ) is nonabelian, then V(A) is residually large.

Proof. From Lemma 4.1 and the remarks that follow it C((0 : µ), µ; 0) and C(µ, (0 :
µ); 0) hold. From Theorem 4.2 ¬C((0 : µ), (0 : µ); 0) implies that V(A) is residually large.
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5 Cardinality Bounds

THEOREM 5.1 Assume that A is a finite subdirectly irreducible algebra with monolith
µ and that typ(0, µ) = 2. If α is an abelian congruence on A of index n, then

|A| ≤ n ·mm

where m = |FV(A)(n+ 1)|.

Proof. Let Y be an α-class of maximum cardinality. Since α has index n, it will suffice
to show that |Y | ≤ mm. We assume that α > 0.

Choose U ∈ MA(0, µ), e ∈ E(A) such that e(A) = U and a pair of elements (0, 1) ∈
µ|U − 0U . Let V denote the α|U -class containing 0. Note that since (0, 1) ∈ µ|U ≤ α|U we
have {0, 1} ⊆ V . C(α, α; 0) holds, so we have C(α, µ; 0) and therefore α ≤ (0 : µ). This
implies that α|U ⊆ B2 ∪ T 2 where B is the body of U and T is the tail. 0 ∈ B, so V ⊆ B.

Fix a transversal for α: {c0, . . . , cn−1}. Let F denote the subset of Pol1A consisting of all
polynomials of the form p(x, c0, · · · , cn−1) where p(x, ȳ) ∈ Clon+1A. Since m = |FV(A)(n+1)|,
we have |F | ≤ m.

Choose distinct elements u, v ∈ Y . Since (0, 1) ∈ CgA(u, v)|U and U = e(A), we can find
q(x, ȳ) ∈ Clo`+1 A and ā ∈ A` such that eqA(u, ā) = 0 6= eqA(v, ā) or the same with u and v
switched. For each ai choose bi ∈ {c0, . . . , cn−1} such that (ai, bi) ∈ α. Then since C(α, α; 0),
(u, v) ∈ α and

eqA(u, ā) 6= eqA(v, ā),

we get
eqA(u, b̄) 6= eqA(v, b̄).

Each bi is a member of {c0, . . . , cn−1} so qA(x, b̄) equals some q′(x) ∈ F . Now we have

eq′(v) α|U − 0A eq′(u) = eqA(u, b̄) α|U eq(u, ā) = 0 ∈ V,

so eq′(v) and eq′(u) are distinct members of V . We also have that eq′(Y ) ⊆ V since Y is an
α-class and V is an α|U -class.

Let F ′ be the subset of F consisting of polynomials p(x) ∈ F such that ep(Y ) ⊆ V .
Define a function Φ : Y → V |F

′| as follows:

Φ(w) = (ep(w))p∈F ′ .

In the last paragraph we showed that for any u 6= v in Y there is a q ′(x) ∈ F ′ such that
eq′(u) 6= eq′(v). It follows that the function Φ described in the last displayed equation is 1-1.
Hence |Y | ≤ |V ||F ′| ≤ |V |m. It remains to show that |V | ≤ m.

V ⊆ B, so A|V is Mal’cev. Since α is abelian, α|V = 1V is abelian. We get that
A|V is affine, since any abelian Mal’cev algebra is affine. The algebra A|V has a least
nonzero congruence since (by Lemma 2.4 of [3]) restriction of congruences is a homomorphism
from the interval I[0, α] in Con A onto Con A|V and µ|V > 0V . This shows that A|V is
polynomially equivalent to a subdirectly irreducible module over a finite ring, R. As shown in
[5], this implies that |V | ≤ |R|. The elements of R may be identified with the unary module
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polynomials that fix the additive identity element. If we take 0 ∈ V to be the additive
identity element of the module structure of A|V , then we may consider the elements of R to
be the unary polynomials r(x) of A|V which satisfy r(0) = 0. Suppose that r(x) = sA(x, ḡ),
s ∈ Clom+1A, ḡ ∈ Am, is such a polynomial. For each gi we choose hi ∈ {c0, . . . , cn−1} such
that (gi, hi) ∈ α. If d is the pseudo-Mal’cev polynomial of U , then d is Mal’cev on V ⊆ B.
We have esA(0, ḡ) = 0 ∈ V , so when x ∈ V

d(esA(0, ḡ), esA(0, ḡ), esA(x, ḡ)) = esA(x, ḡ) = d(esA(x, ḡ), esA(x, ḡ), esA(x, ḡ))

since all the elements in this equation of the form esA(−,−) belong to V ⊆ B. (This
observation is based on the fact that all such elements are α|U -related to 0 and 0/α|U = V .)
From C(α, α; 0), we can change each ḡ to h̄ and get

d(esA(0, ḡ), esA(0, h̄), esA(x, h̄)) = d(esA(x, ḡ), esA(x, h̄), esA(x, h̄)).

The right-hand side equals esA(x, ḡ) while the left-hand side equals d(0, esA(0, h̄), esA(x, h̄)).
Since e|V = idV , we get that for x ∈ V it is the case that

r(x) = esA(x, ḡ) = d(0, esA(0, h̄), esA(x, h̄)).

But sA(x, h̄) ∈ F since each hi ∈ {c0, . . . , cn−1}. What we have shown in this paragraph is
that for every r(x) which represents an element of R there is an element w(x) = sA(x, h̄) ∈ F
such that r(x) = d(0, ew(0), ew(x)). Hence the function

ψ : F → R : w(x) 7→ d(0, ew(0), ew(x))

is onto. This shows that
|V | ≤ |R| ≤ |F | ≤ m.

From our earlier arguments we get that |Y | ≤ mm and this finishes the proof.

THEOREM 5.2 Assume that A is an algebra of cardinality n and that V(A) is residually
small. Let B ∈ V(A) be a finite subdirectly irreducible algebra in V(A) with monolith µ
where typ(0, µ) 6= 1 and 5 6∈ typ{B}. Then

|B| ≤ nn
nn+2

.

Proof. From typ(0, µ) ∈ {2, 3, 4} and Theorem 4.2 we get that (0 : µ) is abelian. By
Lemma 3.3, the index of (0 : µ) is at most |A| = n. This already shows that |B| ≤ |A| = n
if typ(0, µ) ∈ {3, 4} since (0 : µ) = 0 in this case. (In fact, B ∈ HS(A) in this case.) If
typ(0, µ) = 2, then Theorem 5.1 shows that |B| ≤ n·mm where m = |FV(A)(n+1)|. Using the

estimate m ≤ nn
n+1

, which holds for any finite algebra A, one computes that |B| ≤ nn
nn+2

as claimed.

This completes the proof of our main result. Theorem 5.2 describes a recursive function
of |A| which bounds the size of certain subdirectly irreducible algebras in V(A) when this

18



variety is residually small. It is known from McKenzie’s recent work in [7] that there does
not exist a recursive function which bounds the size of every subdirectly irreducible algebra
in V(A) when this variety is residually small. His construction works for certain algebras
with type 5 quotients. This leaves open the following question: Assume that A is finite
and V(A) is residually small. Is there a recursive function f such that every subdirectly
irreducible in V(A) which omits type 5 has cardinality ≤ f(|A|)?

References

[1] R. Freese and R. McKenzie, Residually small varieties with modular congruence lattices,
Transactions AMS 264 (1981), 419–430.

[2] R. Freese and R. McKenzie, Commutator Theory for Congruence Modular Varieties,
LMS Lecture Notes, No. 125, 1987.

[3] D. Hobby and R. McKenzie, The Structure of Finite Algebras, Contemporary Mathe-
matics, American Mathematics Society, Providence, Rhode Island, 1988.

[4] B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21, (1967)
110–121.

[5] K. Kearnes, Residual bounds in varieties of modules, Algebra Universalis 28 (1991),
448–452.

[6] K. Kearnes, An order theoretic property of the commutator, International Journal of
Algebra and Computation 3 (1993),

[7] R. McKenzie, The residual character of a finite algebra is not computable, manuscript,
1994.

[8] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices and Varieties, vol. 1,
Wadsworth & Brooks/Cole, 1987.

[9] R. McKenzie, S. Shelah, The cardinals of simple models for universal theories, Proceed-
ings of Symposia in Pure Mathematics 25 (1974), 53–74.

[10] W. Taylor, Residually small varieties, Algebra Universalis 2 (1972), 33–53.

19


