Objectives:

- Write Riemann sums efficiently.
- Identify when a sum is an over or underestimate of area.

Motivation: Suppose we wanted to estimate the area between $f(x)=x^{2}$ and the x-axis from $x=0$ to $x=200$ using 100 rectangles. We know how to do this:

$$
\text { Area } \approx 0^{2} \cdot 2+2^{2} \cdot 2+4^{2} \cdot 2+\ldots+98^{2} \cdot 2
$$

However, there must be a shorter way to write this.
Sigma Notation: The symbol_ \quad, pronounced "sigma", stands for "sum".
Examples of sigma notation:

1. Add up all numbers from 1 to $100: \sum_{i=1}^{100} i$
2. Add up all the squares of nonnegative integers less than $10 . \sum_{i=0}^{9} i^{2}$
3. Add up five variables labeled $x_{3}, x_{4}, \ldots, x_{7} . \sum_{i=3}^{7} x_{i}$

Using Sigma Notation for Riemann Sums

Suppose we want to come up with an estimate of the area between $f(x)$ and the x-axis between $x=a$ and $x=b$ using n rectangles. We know how to do this using a Riemann sum.

In order to put our sum in Sigma notation, we need to give the rectangle endpoints names.
We'll call the right endpoint of the $i^{\text {th }}$ interval x_{i}. Note that $b=x_{n}$. Let's give a the name x_{0}. Notice that the left endpoint of the $i^{\text {th }}$ interval is x_{i-1}.

The width of each rectangle is written as Δx. To find the height of the rectangle, we need to choose a point in each smaller interval:

In the $i^{\text {th }}$ rectangle, we give this point the name $x_{i}^{*} . x_{i}^{*}$ can be any x-value in the interval $\left[x_{i-1}, x_{i}\right]$

So our area estimate is given by:
$\sum_{i=1}^{n}$ area of $i^{\text {th }}$ rectangle $=\sum_{i=1}^{n}$ width \cdot height $=\sum_{i=1}^{n} \Delta x \cdot f\left(x_{i}^{*}\right)$

If we take a right hand sum, $x_{i}^{*}=$ \qquad x_{i} . How can we express x_{i}^{*} in terms of known values?

The right endpoint of the first interval is a distance of Δx away from a. We can express this as $x_{1}=a+\Delta x$. Then to get the right endpoint of the second interval, we move over by another Δx, so $x_{2}=x_{1}+\Delta x=a+2 \Delta x$. Moving over another interval width we get $x_{3}=a+3 \Delta x$. Continuing in this pattern, $x_{i}=a+i \Delta x$.

So the value of x_{i} depends on Δx. How can we express Δx in terms of known values?

$$
\Delta x=\frac{b-a}{n}
$$

Example Estimate the area between $g(x)=\tan \left(x^{2}\right)$ and the x-axis from $x=-\pi / 4$ to $x=\pi / 4$ using $n=10$ intervals.
$\Delta x=\frac{\pi / 4-(-\pi / 4)}{10}=\frac{\pi}{20}$ so $x_{i}=-\pi / 4+i \Delta x=-\pi / 4+\frac{i \pi}{20}$.
So if we use a right hand estimate, our area estimate is given by:
$\sum_{i=1}^{10} \Delta x g\left(x_{i}\right)=\sum_{i=1}^{10}\left(\frac{\pi}{20}\right) g\left(-\pi / 4+\frac{i \pi}{20}\right)=\sum_{i=1}^{10}\left(\frac{\pi}{20}\right) \tan \left(\left(-\pi / 4+\frac{i \pi}{20}\right)^{2}\right)$

If we want to use a left hand estimate, $x_{i}^{*}=x_{i-1}$. So the area estimate would be:
$\sum_{i=1}^{10} \Delta x g\left(x_{i-1}\right)=\sum_{i=1}^{10} \frac{\pi}{20} \tan \left(\left(-\pi / 4+\frac{(i-1) \pi}{20}\right)^{2}\right)$

We can increase the accuracy of this estimate by increasing n The exact value of the area can be found by \qquad taking the limit of the estimate as $n \rightarrow \infty$

Write an expression for the exact area in this example. (Do not evaluate the limit.)
Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x g\left(x_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi / 4-(-\pi / 4)}{n} g(-\pi / 4+i \Delta x)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{2 n} g\left(-\pi / 4+\frac{i \pi}{2 n}\right)=$ $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{2 n} \tan \left(\left(-\pi / 4+\frac{i \pi}{2 n}\right)^{2}\right)$

Over and Underestimates:

Sketch 5 to 10 rectangles for each estimate. Use your picture to fill in the chart.

Left Hand Estimate

When f is:	LH estimate is:
Constant	exact
Increasing	an underestimate
Decreasing	an overestimate

Right Hand Estimate

When f is:	RH estimate is:
Constant	exact
Increasing	an overestimate
Decreasing	an underestimate

To determine if the Trapezoidal rule is an under or overestimate, we need to look at concavity: (These ones will be easier to see if you use very large trapezoids - only 2-3 trapezoids per curve.)

