Objectives:

- Write Riemann sums efficiently.
- Identify when a sum is an over or underestimate of area.

Motivation: Suppose we wanted to estimate the area between $f(x) = x^2$ and the x-axis from x = 0 to x = 200 using 100 rectangles. We know how to do this:

However, there must be a shorter way to write this.

Sigma Notation: The symbol	, pronounced	, stands for	
Examples of sigma notation:			

- 1. Add up all numbers from 1 to 100:
- 2. Add up all the squares of nonnegative integers less than 10.
- 3. Add up five variables labeled x_3, x_4, \ldots, x_7 .

Using Sigma Notation for Riemann Sums

Suppose we want to come up with an estimate of the area between f(x) and the x-axis between x = a and x = b using n rectangles. We know how to do this using a Riemann sum.

In order to put our sum in Sigma notation, we need to give the rectangle endpoints names.

The width of each rectangle is written as Δx . To find the height of the rectangle, we need to choose a point in each smaller interval:

So our area estimate is given by:

If we take a right hand sum, $x_i^* =$ ______. How can we express x_i^* in terms of known values?

So the value of x_i depends on Δx . How can we express Δx in terms of known values?

Example Estimate the area between $g(x) = \tan(x^2)$ and the x-axis from $x = -\pi/4$ to $x = \pi/4$ using n = 10 intervals.

We can increase the accuracy of this estimate by ______. The exact value of the area can be found by

Write an expression for the exact area in this example. (Do not evaluate the limit.)

Over and Underestimates:

Sketch 5 to 10 rectangles for each estimate. Use your picture to fill in the chart.

 Left Hand Estimate

 When f is:
 LH estimate is:

 Constant
 Increasing

 Decreasing
 Increasing

Right Hand Estimate

When f is:	RH estimate is:
Constant	
Increasing	
Decreasing	

To determine if the **Trapezoidal** rule is an under or overestimate, we need to look at concavity: (These ones will be easier to see if you use very large trapezoids - only 2-3 trapezoids per curve.)

When f is:	Trap estimate is:
Concave down	
Concave up	