Objectives:

- Prove the Evaluation Theorem
- Practice using the Evaluation Theorem

Intuition: Remember that the antiderivative of velocity is position. Let $s(t)$ be the position in feet of an object at time t in seconds and $v(t)$ be the velocity of the object at time t in feet per second.
Then $s(5)-s(0)$ represents \qquad .
We could estimate $s(5)-s(0)$ using a \qquad .

To get the exact value instead of an estimate, \qquad

We call this value \qquad .

Proof of the Evaluation Theorem:

Let $F(x)$ be any antiderivative of $f(x)$ (i.e. $\left.F^{\prime}(x)=f(x)\right)$. Note that this means $F(x)$ is \qquad and therefore \qquad .

Divide \qquad into \qquad intervals, with width \qquad

Now, we try to find a way of writing $F(b)-F(a)$ in terms of these points in $[a, b]$:

Returning to our previous equation for $F(b)-F(a)$:

Using the Evaluation Theorem:

Find $\int_{0}^{\pi}-2^{x}+\sin (x) d x$.

If $s(x)=x-\sin (x)$ represents the velocity of an object in feet per second, what does the integral above represent?

If $f(x)=x-\sin (x)$ represents the increase or decrease in the quantity of fuel carried by a rocket in units of tons per minute, what does the integral above represent?

