Sources.

A Concise Course in Algebraic Topology, J.P. May. Algebraic Topology, A. Hatcher.

Definition. From the dimension axiom for reduced homology, $\widetilde{H}_0(S^0) \cong \mathbb{Z}$. Fix i_0 , a generator of $\widetilde{H}_0(S^0)$. The suspension axiom yields that $\widetilde{H}_{n+1}(S^{n+1}) \xrightarrow{\Sigma} \widetilde{H}_n(S^n) \cong \mathbb{Z}$ is an isomorphism for all $n \ge 0$. Let $i_{n+1} = \Sigma(i_n)$. For a based topological space X, the Hurewicz map, $h : \pi_n(X) \to \widetilde{H}_n(X)$, is given by

 $h([f]) = H_n(f)(i_n).$

Lemma. The Hurewicz map is a natural group homomorphism.

For $[f], [g] \in \pi_n(X), [f] + [g] = [f + g]$ is given by the following composition of maps:

$$S^n \xrightarrow{p} S^n \lor S^n \xrightarrow{f \lor g} X \lor X \xrightarrow{\nabla} X$$

where p is the pinch map and ∇ is the fold map. Consider the composition

$$\widetilde{H}_*(S^n) \xrightarrow{\widetilde{H}_n(p)} \widetilde{H}_n(S^n \vee S^n) \xrightarrow{\widetilde{H}_n(f \vee g)} \widetilde{H}_n(X \vee X) \xrightarrow{\widetilde{H}_n(\nabla)} \widetilde{H}_n(X)$$

The image of i_n under this composite map is $\widetilde{H}_n(\nabla \circ f \lor g \circ p)(i_n) = \widetilde{H}_n(f+g)(i_n) = h([f+g])$. From the additivity axioms, we have isomorphisms $\widetilde{H}_n(S^n) \oplus \widetilde{H}_n(S^n) \to \widetilde{H}_n(S^n \lor S^n)$ and $\widetilde{H}_n(X) \oplus \widetilde{H}_n(X) \to \widetilde{H}_n(X \lor X)$.

Let the dashed arrows be the compositions that make the above diagram commute. The image of i_n along the dashed arrows is

$$i_n \mapsto (i_n, i_n) \mapsto (\widetilde{H}_n(f)(i_n), \widetilde{H}_n(g)(i_n)) \mapsto \widetilde{H}_n(f)(i_n) + \widetilde{H}_n(g)(i_n) = h([f]) + h([g])$$

Since the diagram commutes, h is a group homomorphism. Let $f: X \to Y$ be a map of based spaces.

$$\pi_n(X) \xrightarrow{\pi_n(f)} \pi_n(Y)$$

$$\downarrow h \qquad \qquad \downarrow h$$

$$\widetilde{H}_n(X) \xrightarrow{\widetilde{H}_n(f)} \widetilde{H}_n(Y)$$

Note that $h \circ \pi_n(f)([g]) = h([f \circ g]) = \widetilde{H}_n(f \circ g)(i_n) = \widetilde{H}_n(f) \circ \widetilde{H}_n(g)(i_n) = \widetilde{H}_n(f) \circ h([g])$ for all

 $[g] \in \pi_n(X)$. So the above diagram commutes for any f, i.e., h is natural.

Note. The suspension isomorphism Σ is also natural, so $\Sigma \circ h = h \circ \Sigma$.

Lemma. For any CW-complex X, $\widetilde{H}_n(X) \cong \widetilde{H}_n(X^{n+1})$.

Let $i \ge n+1$. Since X^i is a subcomplex of X^{i+1} , there exists, by the exactness and suspension axioms for reduced homology, a long exact sequence:

$$\cdots \to \widetilde{H}_{n+1}(X^{i+1}/X^i) \to \widetilde{H}_n(X^i) \to \widetilde{H}_n(X^{i+1}) \to \widetilde{H}_n(X^{i+1}/X^i) \to \cdots$$

For any $i, X^{i+1}/X^i$ is a wedge of (i + 1)-spheres. So, $\widetilde{H}_n(X^{i+1}/X^i) \cong \bigoplus_{j \in I} \widetilde{H}_n(S^n_j)$ by additivity. By the suspension axiom, $\widetilde{H}_n(S^{i+1}) \cong \widetilde{H}_{n-1}(S^i) \cong \ldots \cong \widetilde{H}_{n-(i+1)}(S^0)$. Since $n - (i + 1) \neq 0$, the dimension axiom yields that $\widetilde{H}_{n-(i+1)}(S^0) \cong 0$. So, $\widetilde{H}_n(X^{i+1}/X^i) \cong \bigoplus_{j \in I} 0$. An identical argument

shows $\widetilde{H}_{n+1}\left(X^{i+1}/X^i\right) \cong 0$. So, the sequence below is exact:

$$0 \to \widetilde{H}_n(X^i) \to \widetilde{H}_n(X^{i+1}) \to 0$$

Thus, $\widetilde{H}_n(X^i) \cong \widetilde{H}_n(X^{i+1})$ for all $i \ge n+1$. As a consequence, $\widetilde{H}_n(X^{n+1}) \cong \widetilde{H}_n(X^j)$ for all $j \ge n+1$. So we have colim $\widetilde{H}_n(X^i) \cong \widetilde{H}_n(X^{n+1})$.

In A Concise Course in Algebraic Topology, May shows $H_n(X) = \operatorname{colim} H_n(X_i)$ for any $X = X_0 \subseteq X_1 \subseteq \ldots$ The proof uses a construction, tel X_i , formed by attaching the mapping cyclinders for the inclusions $X_i \to X_{i+1}$. This construction is weakly equivalent to X, so $H_n(\operatorname{tel} X_i) \cong H_n(X)$. Then the Mayer-Vietoris sequence for particular subspaces of tel X_i and an exact sequence for the colimit of abelian groups are used to show $H_n(X) \cong \operatorname{colim} H_n(X_i)$. The proof depends on the additivity and weak equivalence axioms for homology of general topological spaces - for CW-complexes we only need additivity. See pages 114-116 in *Concise* for details.

Therefore, $\widetilde{H}_n(X) \cong \operatorname{colim} \widetilde{H}_n(X^j) \cong \widetilde{H}_n(X^{n+1}).$

Lemma. Let X be a wedge of n-spheres. Then $h : \pi_n(X) \to \widetilde{H}_n(X)$ is the abelianization homomorphism for n = 1 and an isomorphism for n > 1.

If X is a single *n*-sphere, $\pi_n(X) \cong \mathbb{Z}\{[id]\}$ and $\widetilde{H}_n(X) \cong \mathbb{Z}\{i_n\}$ by the dimension and suspension axioms. Then $h([id]) = \widetilde{H}_n(id)(i_n) = id(i_n) = i_n$, so $\mathbb{Z}\{[id]\} \xrightarrow{h} \mathbb{Z}\{i_n\}$ is an isomorphism. Note that since $\mathbb{Z}\{[id]\}$ is abelian, this also gives the conclusion for n = 1. Now let $X = \bigvee_{j \in I} S_j^n$. By additivity, $\widetilde{H}_n(X) \cong \bigoplus_{j \in I} \widetilde{H}_n(S_j^n) \cong \bigoplus_{j \in I} \mathbb{Z}\{i_n\}$. For n > 1, $\pi_n(X) = \mathbb{Z}\{I\} \cong \mathbb{Z}\{[id]\}$. The map h is natural, $\pi_n(X)$ is generated by the inclusions

 $S_j^n \to X$, and the isomorphism $\bigoplus_{j \in I}^{J \in I} \widetilde{H}_n(S_j^n) \to \widetilde{H}_n(X)$ is induced by the inclusions S_j^n , thus the following

diagram commutes:

$$\pi_n(S_j^n) \longrightarrow \pi_n(X)$$

$$\downarrow h$$

$$\widetilde{H}_n(S_j^n) \longrightarrow \widetilde{H}_n(X)$$

In particular, $h(\ldots, 0, [id], 0, \ldots) = (\ldots, h(0), h([id]), h(0), \ldots) = (\ldots, 0, i_n, 0, \ldots)$. Then h maps the k-th generator of of $\underset{j \in I}{\mathbb{Z}} \{[id]\}$ to the k-th generator of $\bigoplus_{j \in I} \mathbb{Z} \{i_n\}$ and is therefore an isomorphism. In the case where n = 1, $\pi_n(X) \cong F^I$, the free group generated by the inclusions of the n-spheres into X. Then h maps the k-th generator of F^I to the k-th generator of $\bigoplus_{j \in I} \mathbb{Z} \{i_n\} = (F^I)^{ab}$ and is thus the abelianization homomorphism.