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Algebraic Topology

Topological space = algebraic structure
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Algebraic Topology

Topological space = algebraic structure = info about space

)

All kinds of fun stuff
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m All our maps are continuous and all our spaces are “nice”.
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m All our maps are continuous and all our spaces are “nice”.

m A based space is a topological space X with a
distinguished point .

m A based map is a map of based spaces that takes
basepoint to basepoint.
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The product space X x Y is {(x,y)|x € X,y € Y}
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Let / = [0, 1]. Given two maps f,g : X — Y, a homotopy of
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The product space X x Y is {(x,y)|x € X,y € Y}

Definition

Let / = [0, 1]. Given two maps f,g : X — Y, a homotopy of
fand gisamap H: X x| — Y such that:

m H(x,0) = f(x)
m H(x,1) = g(x)
m H(x,t)==xforall t €/
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If a homotopy of f and g exists, we say f ~ g, “f is
homotopic to g".
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If a homotopy of f and g exists, we say f ~ g, “f is
homotopic to g".

mForany f: X =Y, f~f.
mIf f~g, then g >~ f.
mlff~gand g=>~h, then f ~ h.

So, ~ is an equivalence relation on maps X — Y.
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Fundamental Group
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m Aloop on X isamapy:S!— X where St is the circle.
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m Aloop on X isamapy:S!— X where St is the circle.

m Two loops are in the same homotopy class if there exists
a homotopy between them.
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Definition

The fundamental group of a topological space X, m1(X), is
the set of homotopy classes of loops on X with the operation
of loop concatenation.
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"

A

(-0~

A:St 5 X B:S' > X

O~ -@

A+B:S'— X
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m The identity element of 71(X) is the constant loop.
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m The identity element of 71(X) is the constant loop.

~e

m A loop that is in the same homotopy class as the
constant loop is called contractible .
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m The identity element of 71(X) is the constant loop.

~e

m A loop that is in the same homotopy class as the
constant loop is called contractible .

(H-0-@

Contractible Not Contractible
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Do

f e |[f]
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Ors
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7T1(51) =7
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Homotopy Groups
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Definition
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Definition

The n-sphere is

SO st S2
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Definition

The n™" homotopy group of a space X, m,(X), is the set of
homotopy classes of based maps S” — X. The group
operation is defined by composing the wedge of two maps with
the pinch map S" — S" Vv §".
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An Open Problem
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7Tn(5m)
for all n,m € Z>
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For large enough k, m,.x(S*) is constant. We call this
eventually reached group 5 (S°), the n' stable homotopy
group of S° or the n*" stable stem.
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For large enough k, m,.x(S*) is constant. We call this
eventually reached group 5 (S°), the n' stable homotopy
group of S° or the n*" stable stem.

359
forall n € Z
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A Strategy
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With the exception of 75 (S°), the stable stems are all finite
abelian groups.
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With the exception of 75 (S°), the stable stems are all finite
abelian groups. So, they can be decomposed as a product:

Z/py X L[p3* X -+ X L/ py

One strategy is to see what we can discover about the
p-torsion part of 7,(S°), then assemble that information for
every prime p.
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