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Algebraic Topology
What is homotopy theory?

Algebraic Topology

Topological space ⇒ algebraic structure ⇒ info about space
m

All kinds of fun stuff
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The World We Live In
Some Preliminaries

All our maps are continuous and all our spaces are “nice”.

A based space is a topological space X with a
distinguished point ∗.
A based map is a map of based spaces that takes
basepoint to basepoint.
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What is a Homotopy?
Formal Definition

The product space X × Y is {(x , y)|x ∈ X , y ∈ Y }

Definition

Let I = [0, 1]. Given two maps f , g : X → Y , a homotopy of
f and g is a map H : X × I → Y such that:

H(x , 0) = f (x)

H(x , 1) = g(x)

H(∗, t) = ∗ for all t ∈ I
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What is a Homotopy?
Formal Definition
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What is a Homotopy?
Intuition
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Homotopy Classes

If a homotopy of f and g exists, we say f ' g , “f is
homotopic to g”.

For any f : X → Y , f ' f .

If f ' g , then g ' f .

If f ' g and g ' h, then f ' h.

So, ' is an equivalence relation on maps X → Y .
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2 Fundamental Group

3 Homotopy Groups
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Fundamental Group
Preliminaries

A loop on X is a map γ : S1 → X where S1 is the circle.

Two loops are in the same homotopy class if there exists
a homotopy between them.
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Fundamental Group
Definition

Definition

The fundamental group of a topological space X , π1(X ), is
the set of homotopy classes of loops on X with the operation
of loop concatenation.
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Fundamental Group
Group Operation

A : S1 → X B : S1 → X

A + B : S1 → X
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Fundamental Group
Identity

The identity element of π1(X ) is the constant loop.

A loop that is in the same homotopy class as the
constant loop is called contractible .

Contractible Not Contractible
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Fundamental Group
Inverses

f ∈ [f ]

g ∈ [f ]−1
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Fundamental Group
Examples

π1(S1) = Z
π1(T) = Z⊕ Z

π1(S) = 0
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Spheres

Definition

The n-sphere is

Sn =

{
(x0, x1, . . . , xn) ∈ Rn+1 |

√
x20 + x21 + . . . + x2n = 1

}

S0 S1 S2
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Homotopy Group

Definition

The nth homotopy group of a space X , πn(X ), is the set of
homotopy classes of based maps Sn → X . The group
operation is defined by composing the wedge of two maps with
the pinch map Sn → Sn ∨ Sn.

Katharine Adamyk — Intro to Homotopy Theory 20/27



Outline

1 Intro to Homotopy

2 Fundamental Group

3 Homotopy Groups

4 An Open Problem

5 A Strategy

Katharine Adamyk — Intro to Homotopy Theory 21/27



The Dream

πn
(
Sm
)

for all n,m ∈ Z≥0
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The Dream
Revised

For large enough k , πn+k

(
Sk
)

is constant. We call this
eventually reached group πS

n

(
S0
)
, the nth stable homotopy

group of S0 or the nth stable stem.

πSn
(
S0
)

for all n ∈ Z
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Localization
One Prime at a Time

With the exception of πS
0 (S0), the stable stems are all finite

abelian groups. So, they can be decomposed as a product:

Z/pe11 × Z/pe22 × · · · × Z/pemm

One strategy is to see what we can discover about the
p-torsion part of πn(S0), then assemble that information for
every prime p.
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Thanks!
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