

Katharine Adamyk

August 23, 2017

- 1 Intro to Homotopy
- 2 Fundamental Group
- 3 Homotopy Groups
- 4 An Open Problem

5 A Strategy

1 Intro to Homotopy

- 2 Fundamental Group
- 3 Homotopy Groups
- 4 An Open Problem

5 A Strategy

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへぐ

Topological space

・ロト・西ト・ヨト・ヨー わんの

Topological space \Rightarrow algebraic structure

Topological space \Rightarrow algebraic structure \Rightarrow info about space

Topological space \Rightarrow algebraic structure \Rightarrow info about space \$ \$ All kinds of fun stuff

- ▲ロ > ▲ 圖 > ▲ 国 > ▲ 国 > クタマ

All our maps are continuous and all our spaces are "nice".

- All our maps are continuous and all our spaces are "nice".
- A based space is a topological space X with a distinguished point *.

- All our maps are continuous and all our spaces are "nice".
- A based space is a topological space X with a distinguished point *.
- A based map is a map of based spaces that takes basepoint to basepoint.

イロン イロン イヨン イヨン

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

The product space $X \times Y$ is $\{(x, y) | x \in X, y \in Y\}$

The product space $X \times Y$ is $\{(x, y) | x \in X, y \in Y\}$

Definition

Let I = [0, 1]. Given two maps $f, g : X \to Y$, a homotopy of f and g is a map $H : X \times I \to Y$ such that:

The product space
$$X \times Y$$
 is $\{(x, y) | x \in X, y \in Y\}$

Let I = [0, 1]. Given two maps $f, g : X \to Y$, a homotopy of f and g is a map $H : X \times I \to Y$ such that: H(x, 0) = f(x)

The product space
$$X \times Y$$
 is $\{(x, y) | x \in X, y \in Y\}$

Let I = [0, 1]. Given two maps $f, g : X \to Y$, a homotopy of f and g is a map $H : X \times I \to Y$ such that: H(x, 0) = f(x)H(x, 1) = g(x)

The product space
$$X \times Y$$
 is $\{(x, y) | x \in X, y \in Y\}$

Let I = [0, 1]. Given two maps $f, g : X \to Y$, a homotopy of f and g is a map $H : X \times I \to Y$ such that: H(x, 0) = f(x) H(x, 1) = g(x) $H(*, t) = * \text{ for all } t \in I$

- ◆ ロ ▶ ◆ 昼 ▶ ◆ 星 ▶ → 星 → りへぐ

If a homotopy of f and g exists, we say $f \simeq g$, "f is homotopic to g".

If a homotopy of f and g exists, we say $f\simeq g$, "f is homotopic to g ".

For any $f: X \to Y$, $f \simeq f$.

If a homotopy of f and g exists, we say $f\simeq g$, "f is homotopic to g ".

For any $f: X \to Y$, $f \simeq f$.

If
$$f \simeq g$$
, then $g \simeq f$.

If a homotopy of f and g exists, we say $f \simeq g$, "f is homotopic to g".

- For any $f: X \to Y$, $f \simeq f$.
- If $f \simeq g$, then $g \simeq f$.
- If $f \simeq g$ and $g \simeq h$, then $f \simeq h$.

If a homotopy of f and g exists, we say $f \simeq g$, "f is homotopic to g".

- For any $f: X \to Y$, $f \simeq f$.
- If $f \simeq g$, then $g \simeq f$.
- If $f \simeq g$ and $g \simeq h$, then $f \simeq h$.

So, \simeq is an equivalence relation on maps $X \rightarrow Y$.

1 Intro to Homotopy

- 2 Fundamental Group
- 3 Homotopy Groups
- 4 An Open Problem

5 A Strategy

• A loop on X is a map $\gamma: S^1 \to X$ where S^1 is the circle.

A loop on X is a map γ : S¹ → X where S¹ is the circle.
Two loops are in the same homotopy class if there exists a homotopy between them.

The fundamental group of a topological space X, $\pi_1(X)$, is the set of homotopy classes of loops on X with the operation of loop concatenation.

The fundamental group of a topological space X, $\pi_1(X)$, is the set of homotopy classes of loops on X with the operation of loop concatenation.

 $A + B : S^1 \rightarrow X$

• The identity element of $\pi_1(X)$ is the constant loop.

• The identity element of $\pi_1(X)$ is the constant loop.

The identity element of $\pi_1(X)$ is the constant loop.

A loop that is in the same homotopy class as the constant loop is called contractible.

The identity element of $\pi_1(X)$ is the constant loop.

A loop that is in the same homotopy class as the constant loop is called contractible.

The identity element of $\pi_1(X)$ is the constant loop.

A loop that is in the same homotopy class as the constant loop is called contractible.

• The identity element of $\pi_1(X)$ is the constant loop.

A loop that is in the same homotopy class as the constant loop is called contractible.

・

イロト イロト イヨト イヨト 三日

$$\pi_1(S^1) = \mathbb{Z}$$

・ ロ ト ・ 母 ト ・ ヨ ト ・ ヨ ・ りへぐ

・ロン ・日ン ・日ン ・日ン

- 1 Intro to Homotopy
- 2 Fundamental Group
- 3 Homotopy Groups
- 4 An Open Problem

5 A Strategy

The *n*-sphere is

Spheres

$$S^n = \left\{ (x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} \mid \sqrt{x_0^2 + x_1^2 + \dots + x_n^2} = 1 \right\}$$

The *n*-sphere is

Spheres

$$S^n = \left\{ (x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} \mid \sqrt{x_0^2 + x_1^2 + \dots + x_n^2} = 1 \right\}$$

The *n*-sphere is

Spheres

$$S^n = \left\{ (x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} \mid \sqrt{x_0^2 + x_1^2 + \dots + x_n^2} = 1 \right\}$$

Katharine Adamyk — Intro to Homotopy Theory

 S^0

The *n*-sphere is

Spheres

$$S^{n} = \left\{ (x_{0}, x_{1}, \dots, x_{n}) \in \mathbb{R}^{n+1} \mid \sqrt{x_{0}^{2} + x_{1}^{2} + \dots + x_{n}^{2}} = 1 \right\}$$

The *n*-sphere is

Spheres

$$S^{n} = \left\{ (x_{0}, x_{1}, \dots, x_{n}) \in \mathbb{R}^{n+1} \mid \sqrt{x_{0}^{2} + x_{1}^{2} + \dots + x_{n}^{2}} = 1 \right\}$$

Homotopy Group

Definition

The n^{th} homotopy group of a space X, $\pi_n(X)$, is the set of homotopy classes of based maps $S^n \to X$. The group operation is defined by composing the wedge of two maps with the pinch map $S^n \to S^n \vee S^n$.

- 1 Intro to Homotopy
- 2 Fundamental Group
- 3 Homotopy Groups
- 4 An Open Problem

5 A Strategy

・

$\pi_n(S^m)$ for all $n, m \in \mathbb{Z}_{\geq 0}$

	π1	Π2	п3	Π4	π ₅	π ₆	Π ₇	π ₈	π ₉	π ₁₀	π11	π ₁₂	π ₁₃	π ₁₄	π ₁₅
S 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S 1	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	z	Z 2	Z2	Z 12	Z 2	Z 2	Z ₃	Z 15	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ³	0	0	z	Z 2	Z 2	Z ₁₂	Z 2	Z 2	Z 3	Z ₁₅	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S 4	0	0	0	z	Z 2	Z 2	Z×Z ₁₂	Z 2 ²	Z 2 ²	Z ₂₄ × Z ₃	Z 15	Z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z₈₄×Z 2 ⁵
S ⁵	0	0	0	0	z	Z 2	Z 2	Z ₂₄	Z 2	Z 2	Z 2	Z 30	Z 2	Z 2 ³	Z ₇₂ × Z ₂
S ⁶	0	0	0	0	0	z	Z 2	Z 2	Z 24	0	z	Z 2	Z 60	Z ₂₄ × Z ₂	Z 2 ³
S 7	0	0	0	0	0	0	z	Z 2	Z 2	Z ₂₄	0	0	Z 2	Z ₁₂₀	Z 2 ³
S ⁸	0	0	0	0	0	0	0	z	Z 2	Z 2	Z ₂₄	0	0	Z 2	Z×Z ₁₂₀

For large enough k, $\pi_{n+k}(S^k)$ is constant. We call this eventually reached group $\pi_n^S(S^0)$, the n^{th} stable homotopy group of S^0 or the n^{th} stable stem.

For large enough k, $\pi_{n+k}(S^k)$ is constant. We call this eventually reached group $\pi_n^S(S^0)$, the n^{th} stable homotopy group of S^0 or the n^{th} stable stem.

- 1 Intro to Homotopy
- 2 Fundamental Group
- 3 Homotopy Groups
- 4 An Open Problem

5 A Strategy

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 重|||の��

With the exception of $\pi_0^S(S^0)$, the stable stems are all finite abelian groups.

With the exception of $\pi_0^S(S^0)$, the stable stems are all finite abelian groups. So, they can be decomposed as a product:

With the exception of $\pi_0^S(S^0)$, the stable stems are all finite abelian groups. So, they can be decomposed as a product:

 $\mathbb{Z}/p_1^{e_1} \times \mathbb{Z}/p_2^{e_2} \times \cdots \times \mathbb{Z}/p_m^{e_m}$

With the exception of $\pi_0^S(S^0)$, the stable stems are all finite abelian groups. So, they can be decomposed as a product:

 $\mathbb{Z}/p_1^{e_1} \times \mathbb{Z}/p_2^{e_2} \times \cdots \times \mathbb{Z}/p_m^{e_m}$

One strategy is to see what we can discover about the *p*-torsion part of $\pi_n(S^0)$, then assemble that information for every prime *p*.

Katharine Adamyk — Intro to Homotopy Theory