Localized Ext and Lifting A(1)-Modules

Katharine Adamyk University of Colorado

15 September 2019

Plan

1 The Steenrod Algebra

- 2 The Adams Spectral Sequence
- 3 Margolis Homology
- 4 The Spectral Sequence
- 5 Classification of Q_0 -Local $\mathcal{A}(1)$ -Modules

The Steenrod Algebra

Cohomology Operations

Throughout this talk, $H^{\bullet}(-) = \widetilde{H}^{\bullet}(-; \mathbb{Z}/2)$.

For any $n \in \mathbb{Z}_{\geq 0}$, we have a natural transformation (the n^{th} Steenrod square)

$$Sq^n: H^{ullet}(-) \to H^{ullet+n}(-)$$

that respects suspension

$$\begin{array}{ccc} H^m(X) & \stackrel{Sq^n}{\longrightarrow} & H^{m+n}(X) \\ & & \downarrow_{\Sigma} & & \downarrow_{\Sigma} \\ H^{m+1}(\Sigma X) & \stackrel{Sq^n}{\longrightarrow} & H^{m+n+1}(\Sigma X) \end{array}$$

(and has other nice properties).

The Steenrod Algebra

The Steenrod Algebra

The Steenrod algebra, $\mathcal{A},$ is the graded $\mathbb{Z}/2\text{-algebra generated by the subset of the Steenrod squares:$

$$Sq^{2^n}: H^m(-) \to H^{m+2^n}(-)$$

under the Adem relations:

$$Sq^{i}Sq^{j} = \sum_{k=0}^{\lfloor i/2 \rfloor} {j-k-1 \choose i-2k} Sq^{i+j-k}Sq^{k}$$

for all 0 < i < 2j.

For example, $Sq^2Sq^2 = Sq^1Sq^2Sq^1$.

$\mathcal{A}(1)$

$\mathcal{A}(1)$

$\mathcal{A}(1)$

$\mathcal{A}(1)$

$\mathcal{A}(1)$

$\mathcal{A}(1)$

∮Sq¹

$\mathcal{A}(1)$

$$Sq^1 Sq^2 = Sq^3$$

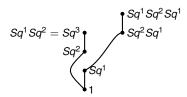
 Sq^2
 Sq^1

$\mathcal{A}(1)$

$$Sq^{1}Sq^{2} = Sq^{3}$$

 Sq^{2}
 Sq^{2}
 Sq^{1}

$\mathcal{A}(1)$



$\mathcal{A}(1)$

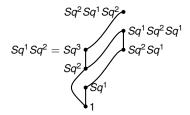
$$Sq^{1}Sq^{2} = Sq^{3}$$

$$Sq^{2}Sq^{1}$$

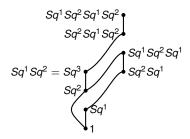
$$Sq^{2}Sq^{1}$$

$$Sq^{2}Sq^{1}$$

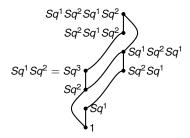
$\mathcal{A}(1)$

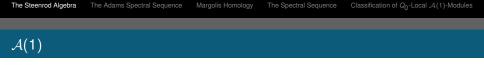


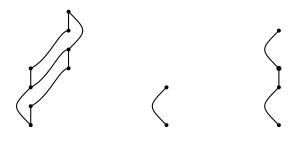
$\mathcal{A}(1)$



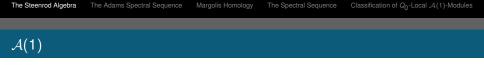
$\mathcal{A}(1)$



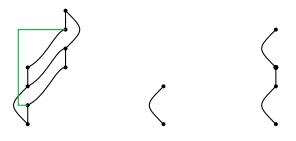




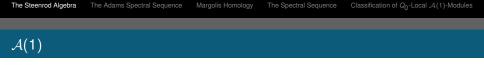
$$Sq^2Sq^1Sq^2 = Sq^1Sq^4 + Sq^4Sq^1$$



Some A(1)-modules have a compatible A-module structure. Some do not.



 $Sq^2Sq^1Sq^2 = Sq^1Sq^4 + Sq^4Sq^1$

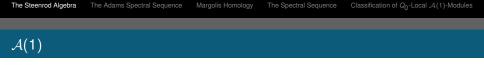


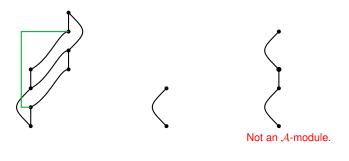


$$Sq^2Sq^1Sq^2 = Sq^1Sq^4 + Sq^4Sq^1$$



$$Sq^2Sq^1Sq^2 = Sq^1Sq^4 + Sq^4Sq^1$$





$$Sq^2Sq^1Sq^2 = Sq^1Sq^4 + Sq^4Sq^1$$

Questions

Question 1

Which $\mathcal{A}(1)$ -modules can be given a compatible \mathcal{A} -module structure?

The Adams Spectral Sequence

The Adams Spectral Sequence

Definition

For a nice space or spectrum X, there exists a spectral sequence

$$E_2^{s,t} = Ext_{\mathcal{A}}^{s,t}(H^*(X), \mathbb{Z}/2) \Rightarrow \pi_{t-s}(X)_2^{\wedge}$$

Motivating Example

ko

The spectrum KO represents real topological K theory. That is,

$$K^n_{\mathbb{R}}(X) = [X, KO]_n$$

There is a spectrum *ko* such that
$$\pi_n(ko) = \begin{cases} \pi_n(KO) & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Thanks to Bott periodicity, we know the homotopy groups of ko are 8-periodic:

 $\mathbb{Z}, \mathbb{Z}/2, \mathbb{Z}/2, 0, \mathbb{Z}, 0, 0, 0, \mathbb{Z}, \mathbb{Z}/2, \dots$

Motivating Example

The cohomology of connective real K theory is known:

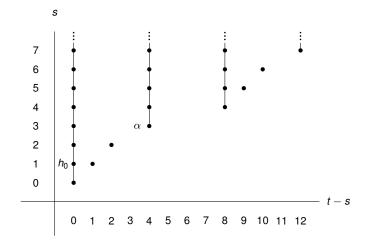
$$H^{ullet}(ko) = \mathcal{A} \otimes_{\mathcal{A}(1)} \mathbb{Z}/2 = \mathcal{A}/\!/\mathcal{A}(1)$$

So, the E_2 page of the Adams Spectral Sequence for ko is:

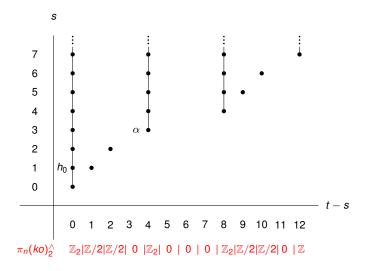
$$\textit{Ext}^{s,t}_{\mathcal{A}}(\mathcal{A}/\!/\mathcal{A}(1),\mathbb{Z}/2)\cong\textit{Ext}^{s,t}_{\mathcal{A}(1)}(\mathbb{Z}/2,\mathbb{Z}/2)$$

Even better, this spectral sequence collapses on the second page, so we can read off the 2-completed homotopy groups of ko.

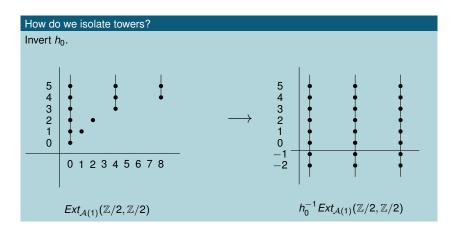
$\textit{Ext}_{\mathcal{A}(1)}^{s,t}(\mathbb{F}_2,\mathbb{F}_2) \Rightarrow \pi_{t-s}(\textit{ko})_2^{\wedge}$



$\mathsf{Ext}^{s,t}_{\mathcal{A}(1)}(\mathbb{F}_2,\mathbb{F}_2) \Rightarrow \pi_{t-s}(\mathsf{ko})^{\wedge}_2$



Inverting h₀



Questions

Question 2

In general, what can we say about $h_0^{-1}Ext_{\mathcal{A}(1)}(M, \mathbb{Z}/2)$ for an $\mathcal{A}(1)$ -module, *M*?

 $\ln \mathcal{A}(1),$

$$egin{aligned} Q_0 &= Sq^1 \ Q_1 &= [Sq^{2^1}, Q_0] &= Sq^2Sq^1 + Sq^1Sq^2. \end{aligned}$$

Importantly, $Q_i Q_i = 0$.

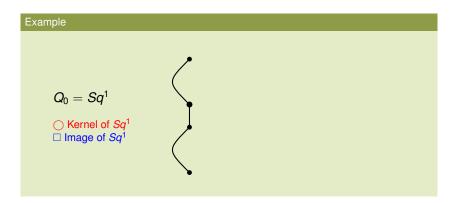
Q_i Margolis Homology

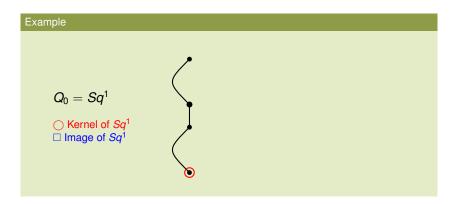
Let *M* be an $\mathcal{A}(1)$ -module. We have a chain complex,

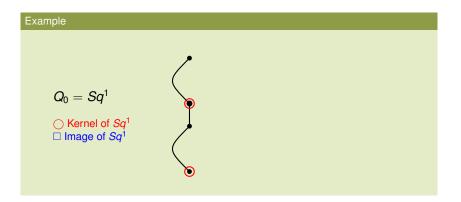
$$M \xleftarrow{Q_i} M \xleftarrow{Q_i} M$$

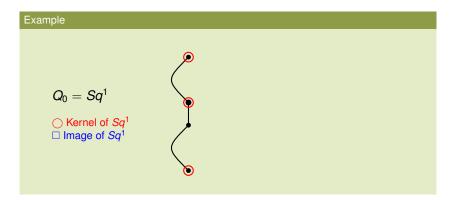
The homology of this complex is $H_{\bullet}(M; Q_i)$, the Q_i Margolis homology of M.

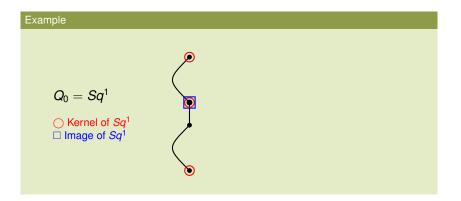
An $\mathcal{A}(1)$ -module, M, is called Q_i -local if $H_{\bullet}(M; Q_i) = 0$ for $j \neq i$.

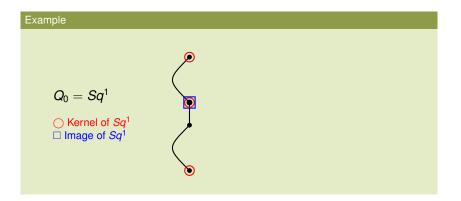


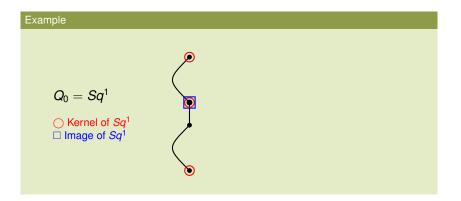


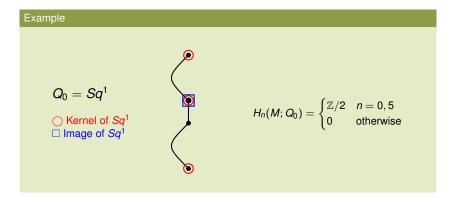




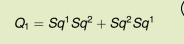








Example



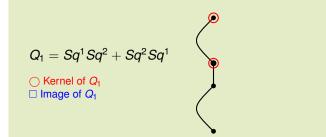
 \bigcirc Kernel of Q_1 \square Image of Q_1

Example

$$Q_1 = Sq^1Sq^2 + Sq^2Sq^1$$

 \bigcirc Kernel of Q_1 \square Image of Q_1

Example

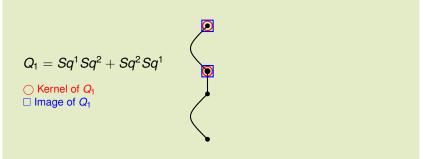


Example

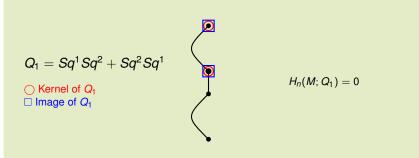
$$Q_1 = Sq^1Sq^2 + Sq^2Sq^1 \qquad \Big($$

 \bigcirc Kernel of Q_1 \square Image of Q_1 0

Example



Example



The Spectral Sequence

Finding h_0 Towers with Margolis Homology

Vanishing Theorem (Adams)

If $H_{\bullet}(M; Q_0) = 0$ for any $\mathcal{A}(1)$ -module M,

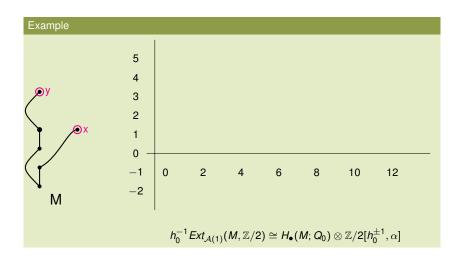
$$h_0^{-1} Ext_{\mathcal{A}(1)}(M, \mathbb{Z}/2) = 0$$

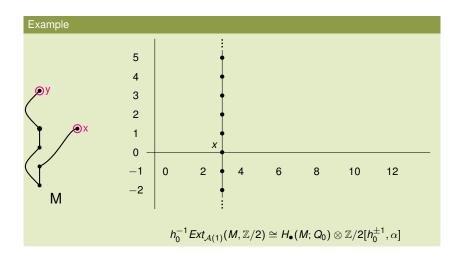
Finding *h*⁰ Towers with Margolis Homology

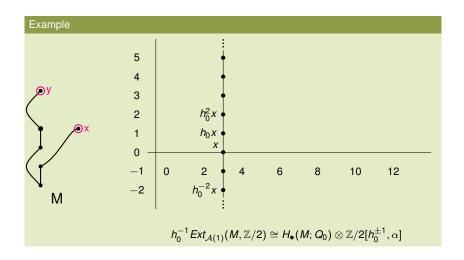
Theorem (Davis)

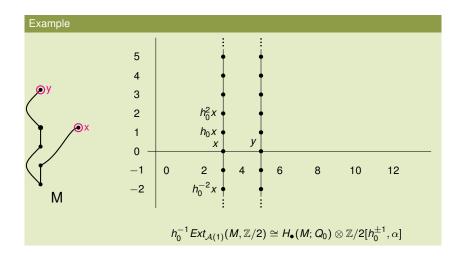
If M is an A-module, then

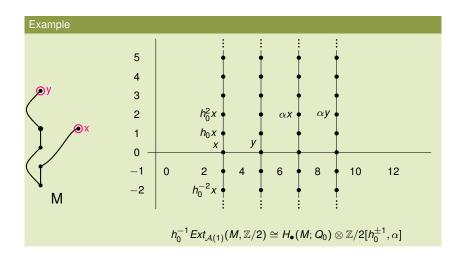
$$h_0^{-1} Ext_{\mathcal{A}(1)}(M, \mathbb{Z}/2) \cong H_{\bullet}(M; Q_0) \otimes \mathbb{Z}/2[h_0^{\pm 1}, \alpha]$$

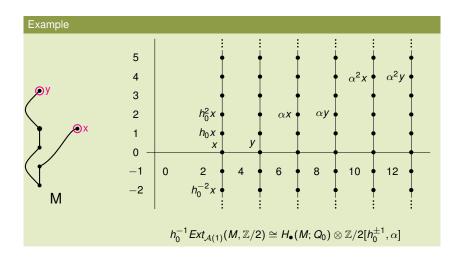


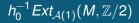




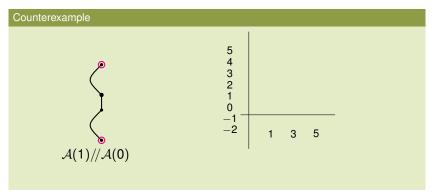


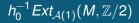




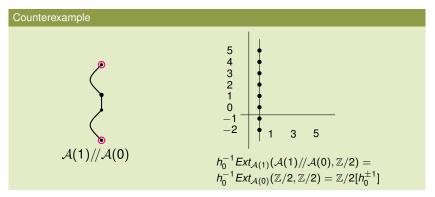


However, if *M* is not an A-module, but merely an A(1)-module, this can fail.





However, if *M* is not an A-module, but merely an A(1)-module, this can fail.



Questions

Question 2 (Updated)

Can we describe $h_0^{-1} Ext_{\mathcal{A}(1)}(M, \mathbb{Z}/2)$ in terms of Q_0 -Margolis homology for $\mathcal{A}(1)$ -modules that are not necessarily \mathcal{A} -modules?

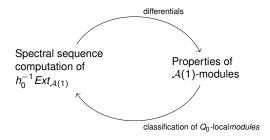
The Spectral Sequence

Proposition (Ricka)

For any bounded below A(1)-module, M, there exists a spectral sequence

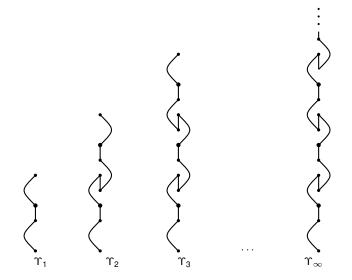
$$E_{1} \cong H_{\bullet}(M; Q_{0}) \otimes \mathbb{Z}/2[h_{0}^{\pm 1}, \alpha] \Rightarrow h_{0}^{-1} Ext_{\mathcal{A}(1)}(M, \mathbb{F}_{2})$$

If *M* is an *A*-module, then this spectral sequence should collapse on the first page. So, any nonzero differentials indicate the lack of a compatible *A*-module structure.



Classification of Q_0 -Local $\mathcal{A}(1)$ -Modules

The Seagull Modules



The Seagull Modules

Margolis Homology of the Seagulls

For finite n,

$$H_k(\Upsilon_n; Q_0) = \begin{cases} \mathbb{Z}/2 & k = 0, 4n + 5\\ 0 & \text{otherwise} \end{cases}$$
$$H_{\bullet}(\Upsilon_n; Q_1) = 0$$

When $n = \infty$,

$$\begin{split} H_k(\Upsilon_{\infty}; Q_0) &= \begin{cases} \mathbb{Z}/2 & k = 0\\ 0 & \text{otherwise} \end{cases} \\ H_{\bullet}(\Upsilon_{\infty}; Q_1) &= 0 \end{split}$$

(The seagulls are " Q_0 -local.")

The Seagull Modules

Proposition (A.)

The spectral sequence

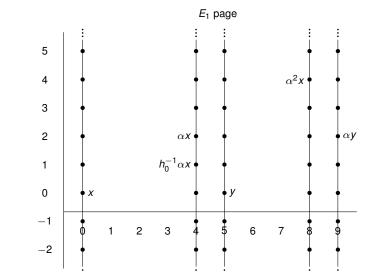
$$E_1 \simeq H_{\bullet}(\Upsilon_n; Q_0) \otimes \mathbb{Z}/2[h_0^{\pm 1}, \alpha] \Rightarrow h_0^{-1} Ext_{\mathcal{A}(1)}(\Upsilon_n, \mathbb{F}_2)$$

has a nonzero differential d_n (and all other differentials are zero).

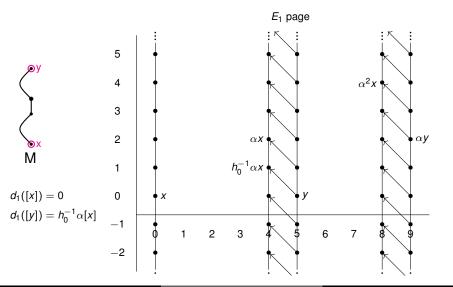
Corollary (A.)

No Υ_n for finite *n* lifts to an \mathcal{A} -module.

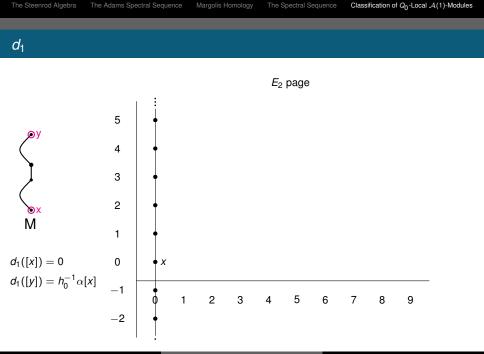
Example



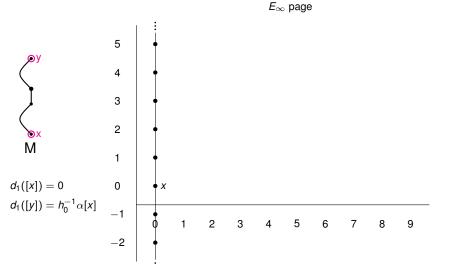
Example



Katharine Adamyk University of Colorado University c



Example



Classifying A(1)-Modules

Proposition [Conjecture] (A.)

If *M* is a finite [bounded below, finite type] $\mathcal{A}(1)$ -module and $H_{\bullet}(M; Q_1) = 0$, then *M* is isomorphic to a direct sum of suspensions of Υ_n 's.

Probable Fact

If *M* is a bounded below $\mathcal{A}(1)$ -module of finite type, then $H_{\bullet}(\Upsilon_{\infty} \otimes M; Q_1) = 0$ and the spectral sequences for *M* and $\Upsilon_{\infty} \otimes M$ are isomorphic.

For n = 1, we have the correspondence:

Spectral Sequence $Q_0 - \text{local modules}$ $\mathcal{A}(1)$ -modules

There's a nonzero
$$d_1$$
 in
 $E_1 \Rightarrow h_0^{-1} Ext_{\mathcal{A}(1)}(M, \mathbb{F}_2) \iff \Upsilon_{\infty} \otimes M$ has a direct summand $\Upsilon_1 \iff \begin{bmatrix} M \text{ has classes} \\ [x], [y] \in H_{\bullet}(M; Q_0) \text{ with} \\ x_* = Sq^2 Sq^1 Sq^2 y_* \end{bmatrix}$

. . .

Goal

Determine the condition for an $\mathcal{A}(1)$ -module, M that corresponds to Υ_n appearing as a summand of $\Upsilon_\infty \otimes M$.

Thank you!

Questions?