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§Motivation

Consider the curve y2 = x2 − 2x + 4 together with O, a point at infinity. We can define addition of
points on the curve as follows:
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To add points P and Q, take the line
through them and find the third point
of intersection on the curve. (If P = Q,
we take the tangent line.)
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Then take the line through this new
point and O. The third point of in-
tersection of this line with the curve is
P +Q.

Exercise: The points on the curve with this addition form a group with identity O.

This curve is an example of a Weierstrass curve, which have the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

plus a point at infinity. In this case we had coefficients ai ∈ Z.

Questions: Can we define Weierstrass curves for other coefficients? Where do these curves live? Do
they have a group structure?
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§What is an Elliptic Curve? (Part I)

For a curve C over a field K we have:

• The field of functions on C, over K or over K (denoted K(C) and K(C) respectively).

• Div(C), the free abelian group generated by the points of C with a subgroup of principal divisors
(elements of the form

∑
P∈C

ordP (f)P for some f ∈ K(C)×).

• A partial ordering onDiv(C) as follows: D ≥ 0 if all coefficients inD =
∑
P∈C

nPP are nonnegative.

D1 ≥ D2 if D1 −D2 ≥ 0.

• Pic(C), the quotient of Div(C) by the subgroup of principal divisors.

• ΩC , the space of differential forms on C.

• A map div : ΩC → Div(C). Any class in the image of div in Pic(C) is called a canonical divisor.

For any D =
∑
P∈C

nPP ∈ Div(C), we define:

• degD =
∑
P∈C

nP

• A finite dimensional vector space L(D) = {f ∈ K(C)×|div(f) ≤ −D} ∪ {0}

• An integer `(D) equal to the dimension of L(D) over K(C).

Theorem 1. (Riemann-Roch) Let C be a smooth curve and let KC be a canonical divisor. Then there
exists some integer g ≥ 0, called the genus of C, such that for every divisor D ∈ Div(C),

`(D)− `(KC −D) = deg(D)− g + 1

Definition. (Version 1)
An elliptic curve over a field K is a smooth, projective curve E ⊂ P2

K of genus one with a base
point.
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§Elliptic Curves Over C

Let Λ ⊂ C be a lattice. Recall that the complex torus C/Λ has a complex Lie group structure. We
will see that if we want to understand elliptic curves over C, we can study complex tori.

Definition. An elliptic function relative to Λ is a meromorphic function on C compatible with
quotienting by the lattice. (I.E. For all z ∈ C, ω ∈ Λ, f(z + ω) = f(z).)
The field of all elliptic functions with respect to Λ is denoted by C(Λ).

Definition. The Weierstrass ℘-function relative to Λ is given by

℘(z; Λ) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)

Fact. All elliptic functions are rational combinations of ℘ and ℘′.

Definition. The Eisenstein series of weight 2k is given by

G2k(Λ) =
∑

ω∈Λ\{0}

ω−2k

Proposition 1. Let g2 denote 60G4(Λ) and g3 denote 140G6(Λ). Then y2 = 4x3 − g2x − g3 is an
elliptic curve that is isomorphic as a complex Lie group to C/Λ.

Proposition 2. Let E be an elliptic curve over C. Then there exists a lattice Λ ⊂ C unique up to
homothety such that C/Λ ∼= E (as complex Lie groups).

(Note: Λ1 is homothetic to Λ2 if there exists α ∈ C× such that Λ1 = αΛ2)

The isomorphism from C/Λ to the associated elliptic curve E is given by z 7→ [℘(z), ℘′(z), 1].
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§What is an Elliptic Curve? (Part II)

Definition. (Version 2)
An elliptic curve over a (commutative) ring R, is a smooth projective curve (1-dim. variety), E ⊂ P2

R

of genus one with base point.

Or, if you like, a group scheme over Spec(R) that is a relative 1-dim., smooth, proper curve over R.

Note: For any algebraic variety, the genus is g = −
(
χ(O)− 1

)
, where O is the structure sheaf and χ

is the Euler characteristic.

Definition. Let R be a commutative ring. A generalized Weierstrass equation C over R has the
form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with ai ∈ R, C ⊂ P2
R.

We will generally want to write this in affine coordinates, letting x = X/Z, y = Y/Z:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

but we also must include the single point on the curve where Z = 0, O = [0, 1, 0].

Here are a whole bunch of things associated to our Weierstrass equation that may be useful later:

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

j = c3
4/∆

The discriminant is ∆ ∈ Z[a1, . . . , a6], and we say that C is smooth if ∆ is invertible in R.

We could check that 2633∆ = c3
4 − c2

6, so if 2 and 3 are invertible in R, ∆ =
c3

4 − c2
6

2633
.

A group law on E, a non-singular Weierstrass curve with distinguished point O, is determined by
requiring the sum of any three colinear points to be O.

Proposition 3. Any elliptic curve over R is isomorphic (incl. O 7→ [0, 1, 0]) to a curve given by a
Weierstrass equation with coefficients in R. Conversely, every smooth curve given by a Weierstrass
equation with coefficients in R is an elliptic curve over R with base point O = [0, 1, 0].
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Proof sketch for the case where R is a field:
Riemann–Roch (eventually) implies that if degD > 2g − 2, then `(D) = degD − g + 1.

Given an elliptic curve E over K, g = 1 and deg(nO) = n > 2(1) − 2 for any positive integer n. So,
`(nO) = deg(nO)− 1 + 1 = n.
Choose x, y ∈ K(E) such that {1, x} is a basis for L

(
2(O)

)
and {1, x, y} is a basis for L

(
3(O)

)
. Then

1, x, y, xy, x2, y2, x3 are seven elements of L
(
6(O)

)
, which has dimension 6. Thus, there exists some

relation 0 = A1 + A2x + A3y + A4x
2 + A5xy + A6y

2 + A7x
3. A change of coordinates gives us a

Weierstrass curve. It remains to show that E is isomorphic to the curve described by this equation.

Given a smooth Weierstrass curve C, we can construct a differential ω ∈ ΩC such that div(ω) = 0.
Then, by Riemann–Roch, 2g − 2 = deg

(
div(ω)

)
= 0. So E has genus one and we take O = [0, 1, 0].

§Isomorphisms

Since our definition of elliptic curve includes a base point, we want isomorphisms of elliptic curves to
fix the point O = [0, 1, 0].
All of these isomorphisms take the form x 7→ u2x+ r, y 7→ u3y+ su2x+ t for some r, s, t ∈ R, u ∈ R×.
What happens to all the things associated to this curve under the isomorphism?

a1 7→ u−1(a1 + 2s)

a2 7→ u−2(a2 − sa1 + 3r − s2)

a3 7→ u−3(a3 + ra1 + 2t)

a4 7→ u−4(a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st)

a6 7→ u−6(a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1)

b2 7→ u−2(b2 + 12r)

b4 7→ u−4(b4 + rb2 + 6r2)

b6 7→ u−6(b6 + 2rb4 + r2b2 + 4r3)

b8 7→ u−8(b8 + 3rb6 + 3r2b4 + r3b2 + 3r4)

c4 7→ u−4c4

c6 7→ u−6c6

∆ 7→ u−12∆

j 7→ j

Things to note: If ∆ is invertible in R, so is the new discriminant. The term j is invariant under
isomorphism.
Given any Weierstrass curve with coefficients in Z[a1, . . . , a6], an isomorphism can be written down
to the universal Weierstrass curve over A = Z[a1, a2, a3, a4, a6] given by Ca1,...,a6 : y2 + a1xy + a3y =
x3 + a2x

2 + a4x+ a6.
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§Defining a Formal Group Law

Given a Weierstrass curve E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, we can expand about O to get

a formal group law.

• We use the substitution z = −x
y

, w = −1

y
and arrive at

w = z3 + (a1z + a2z
2)w + (a3 + a4z)w2

We then repeatedly substitute this expression for w on the right hand side to get a formal power
series in z equal to w.

– More precisely, let f1(z, w) = z3 + (a1z + a2z
2)w + (a3 + a4z)w2 and let fm+1(z, w) =

fm(z, f(z, w)).
We take w(z) = lim

m→∞
fm(z, 0).

• Let x(z) =
z

w(z)
and y(z) = − 1

w(z)
. Then

(
x(z), y(z)

)
is a formal solution to the Weierstrass

equation.

• Given
(
z1, w(z1)

)
and

(
z2, w(z2)

)
we can then find z3 such that (z1, w(z1)) + (z2, w(z2)) =

−(z3, w(z3)).

– We have x(z) =
z

w(z)
=

1

z2
− a1

z
− a3z − (a4 + a1a3)z2 − . . . and

y(z) = − 1

w(z)
= − 1

z3
+
a1

z2
+
a2

z
+ a3 + (a4 + a1a3)z − . . .. The line connecting (z1, w(z1))

and (z2, w(z2)) is w = λz + ν where λ =
w2 − w1

z2 − z1

=
∞∑
n=3

An−3
zn2 − zn1
z2 − z1

and ν = w1 − λz1.

Setting this equal to our Weierstrass equation for w yields a cubic in z. The roots of this cu-

bic are z1, z2, and z3 = −z1−z2−
a1λ+ a3λ

2 + a2ν + 2a4λν + 3a6λ
2ν

1 + a2λ+ a4λ2 + a6λ3
∈ Z[a1, . . . , a6]Jz1, z2K.

The group law requires that
(
z1, w(z1)

)
+
(
z2, w(z2)

)
+
(
z3, w(z3)

)
= O.

• So, in order to determine the formal group law F (z1, z2) associated to E, we will require that
F (z1, z2) = i(z3) where i(z3) is the z-coordinate of −(z3, w(z3)).

– We have z = −x
y

and the inverse of (x, y) is (x,−y − a1x− a3).

So,

F (z1, z2) = i(z3) =
x(z3)

y(z3) + a1x(z3) + a3

= z1 + z2 − a1z1z2 − a2(z2
1z2 + z1z

2
2) + (−2a3z

2
1z2 + (a1a2 − 3a3)z2

1z
2
2 − 2a3z1z

3
2) + . . .
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§What is an Elliptic Curve? (Part III)

Definition. A (generalized) elliptic curve over a scheme S is a morphism of schemes E → S
where each fibre is an elliptic curve. In each fibre we then have a distinguished point O and together
these form the identity section e : S → E. We can formally complete the curve at this identity section
to get the formal group law. (Zariski locally, this looks like the formal group law we have already given.)

Recommended Resources

The content relating to elliptic curves over fields comes primarily from Joseph Silverman’s books The
Arithmetic of Elliptic Curves and Advanced Topics in the Arithmetic of Elliptic Curves.
Resources for the rest of the content include Ravi Vakil’s The Rising Sea, Charles Rezk’s course notes
on tmf, and Robin Hartshorne’s Algebraic Geometry.
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