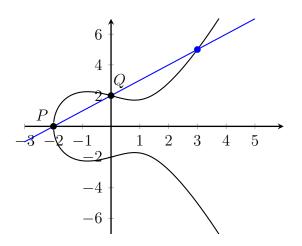
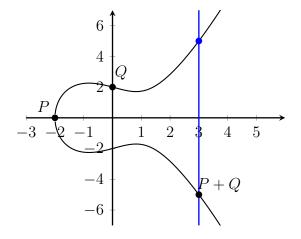
§Motivation

Consider the curve $y^2 = x^2 - 2x + 4$ together with O, a point at infinity. We can define addition of points on the curve as follows:





To add points P and Q, take the line through them and find the third point of intersection on the curve. (If P = Q, we take the tangent line.)

Then take the line through this new point and O. The third point of intersection of this line with the curve is P + Q.

Exercise: The points on the curve with this addition form a group with identity O.

This curve is an example of a Weierstrass curve, which have the form

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

plus a point at infinity. In this case we had coefficients $a_i \in \mathbb{Z}$.

Questions: Can we define Weierstrass curves for other coefficients? Where do these curves live? Do they have a group structure?

§What is an Elliptic Curve? (Part I)

For a curve C over a field K we have:

- The field of functions on C, over K or over \overline{K} (denoted K(C) and $\overline{K}(C)$ respectively).
- Div(C), the free abelian group generated by the points of C with a subgroup of principal divisors (elements of the form $\sum_{P \in C} ord_P(f)P$ for some $f \in \overline{K}(C)^{\times}$).
- A partial ordering on Div(C) as follows: $D \ge 0$ if all coefficients in $D = \sum_{P \in C} n_P P$ are nonnegative. $D_1 \ge D_2$ if $D_1 - D_2 \ge 0$.
- Pic(C), the quotient of Div(C) by the subgroup of principal divisors.
- Ω_C , the space of differential forms on C.
- A map $div: \Omega_C \to Div(C)$. Any class in the image of div in Pic(C) is called a canonical divisor.

For any $D = \sum_{P \in C} n_P P \in Div(C)$, we define:

- $degD = \sum_{P \in C} n_P$
- A finite dimensional vector space $\mathcal{L}(D) = \{f \in \overline{K}(C)^{\times} | div(f) \leq -D\} \cup \{0\}$
- An integer $\ell(D)$ equal to the dimension of $\mathcal{L}(D)$ over $\overline{K}(C)$.

Theorem 1. (Riemann-Roch) Let C be a smooth curve and let K_C be a canonical divisor. Then there exists some integer $g \ge 0$, called the genus of C, such that for every divisor $D \in Div(C)$,

$$\ell(D) - \ell(K_C - D) = \deg(D) - g + 1$$

Definition. (Version 1)

An elliptic curve over a field K is a smooth, projective curve $E \subset \mathbb{P}^2_K$ of genus one with a base point.

§Elliptic Curves Over $\mathbb C$

Let $\Lambda \subset \mathbb{C}$ be a lattice. Recall that the complex torus \mathbb{C}/Λ has a complex Lie group structure. We will see that if we want to understand elliptic curves over \mathbb{C} , we can study complex tori.

Definition. An *elliptic function* relative to Λ is a meromorphic function on \mathbb{C} compatible with quotienting by the lattice. (I.E. For all $z \in \mathbb{C}$, $\omega \in \Lambda$, $f(z + \omega) = f(z)$.) The field of all elliptic functions with respect to Λ is denoted by $\mathbb{C}(\Lambda)$.

Definition. The Weierstrass \wp -function relative to Λ is given by

$$\wp(z;\Lambda) = \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)$$

Fact. All elliptic functions are rational combinations of \wp and \wp' .

Definition. The *Eisenstein series of weight* 2k is given by

$$G_{2k}(\Lambda) = \sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-2k}$$

Proposition 1. Let g_2 denote $60G_4(\Lambda)$ and g_3 denote $140G_6(\Lambda)$. Then $y^2 = 4x^3 - g_2x - g_3$ is an elliptic curve that is isomorphic as a complex Lie group to \mathbb{C}/Λ .

Proposition 2. Let *E* be an elliptic curve over \mathbb{C} . Then there exists a lattice $\Lambda \subset \mathbb{C}$ unique up to homothety such that $\mathbb{C}/\Lambda \cong E$ (as complex Lie groups).

(Note: Λ_1 is homothetic to Λ_2 if there exists $\alpha \in \mathbb{C}^{\times}$ such that $\Lambda_1 = \alpha \Lambda_2$)

The isomorphism from \mathbb{C}/Λ to the associated elliptic curve E is given by $z \mapsto [\wp(z), \wp'(z), 1]$.

§What is an Elliptic Curve? (Part II)

Definition. (Version 2)

An elliptic curve over a (commutative) ring R, is a smooth projective curve (1-dim. variety), $E \subset \mathbb{P}^2_R$ of genus one with base point.

Or, if you like, a group scheme over Spec(R) that is a relative 1-dim., smooth, proper curve over R.

Note: For any algebraic variety, the genus is $g = -(\chi(\mathcal{O}) - 1)$, where \mathcal{O} is the structure sheaf and χ is the Euler characteristic.

Definition. Let R be a commutative ring. A generalized Weierstrass equation C over R has the form

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}$$

with $a_i \in R, C \subset \mathbb{P}^2_R$.

We will generally want to write this in affine coordinates, letting x = X/Z, y = Y/Z:

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

but we also must include the single point on the curve where Z = 0, O = [0, 1, 0].

Here are a whole bunch of things associated to our Weierstrass equation that may be useful later:

$$\begin{split} b_2 &= a_1^2 + 4a_2 \\ b_4 &= 2a_4 + a_1a_3 \\ b_6 &= a_3^2 + 4a_6 \\ b_8 &= a_1^2a_6 + 4a_2a_6 - a_1a_3a_4 + a_2a_3^2 - a_4^2 \\ c_4 &= b_2^2 - 24b^4 \\ c_6 &= -b_2^3 + 36b_2b_4 - 216b_6 \\ \Delta &= -b_2^2b_8 - 8b_4^3 - 27b_6^2 + 9b_2b_4b_6 \\ j &= c_4^3/\Delta \end{split}$$

The discriminant is $\Delta \in \mathbb{Z}[a_1, \ldots, a_6]$, and we say that C is smooth if Δ is invertible in R. We could check that $2^6 3^3 \Delta = c_4^3 - c_6^2$, so if 2 and 3 are invertible in R, $\Delta = \frac{c_4^3 - c_6^2}{2^6 3^3}$. A group law on E, a non-singular Weierstrass curve with distinguished point O, is determined by requiring the sum of any three collinear points to be O.

Proposition 3. Any elliptic curve over R is isomorphic (incl. $O \mapsto [0, 1, 0]$) to a curve given by a Weierstrass equation with coefficients in R. Conversely, every smooth curve given by a Weierstrass equation with coefficients in R is an elliptic curve over R with base point O = [0, 1, 0].

Proof sketch for the case where R is a field:

Riemann-Roch (eventually) implies that if degD > 2g - 2, then $\ell(D) = degD - g + 1$.

Given an elliptic curve E over K, g = 1 and deg(nO) = n > 2(1) - 2 for any positive integer n. So, $\ell(nO) = deg(nO) - 1 + 1 = n$.

Choose $x, y \in K(E)$ such that $\{1, x\}$ is a basis for $\mathcal{L}(2(O))$ and $\{1, x, y\}$ is a basis for $\mathcal{L}(3(O))$. Then $1, x, y, xy, x^2, y^2, x^3$ are seven elements of $\mathcal{L}(6(O))$, which has dimension 6. Thus, there exists some relation $0 = A_1 + A_2x + A_3y + A_4x^2 + A_5xy + A_6y^2 + A_7x^3$. A change of coordinates gives us a Weierstrass curve. It remains to show that E is isomorphic to the curve described by this equation.

Given a smooth Weierstrass curve C, we can construct a differential $\omega \in \Omega_C$ such that $div(\omega) = 0$. Then, by Riemann-Roch, $2g - 2 = deg(div(\omega)) = 0$. So E has genus one and we take O = [0, 1, 0].

§Isomorphisms

Since our definition of elliptic curve includes a base point, we want isomorphisms of elliptic curves to fix the point O = [0, 1, 0].

All of these isomorphisms take the form $x \mapsto u^2 x + r$, $y \mapsto u^3 y + su^2 x + t$ for some $r, s, t \in R, u \in R^{\times}$. What happens to all the things associated to this curve under the isomorphism?

$$\begin{array}{l} a_{1} \mapsto u^{-1}(a_{1}+2s) \\ a_{2} \mapsto u^{-2}(a_{2}-sa_{1}+3r-s^{2}) \\ a_{3} \mapsto u^{-3}(a_{3}+ra_{1}+2t) \\ a_{4} \mapsto u^{-4}(a_{4}-sa_{3}+2ra_{2}-(t+rs)a_{1}+3r^{2}-2st) \\ a_{6} \mapsto u^{-4}(a_{6}+ra_{4}+r^{2}a_{2}+r^{3}-ta_{3}-t^{2}-rta_{1}) \\ b_{2} \mapsto u^{-2}(b_{2}+12r) \\ b_{4} \mapsto u^{-4}(b_{4}+rb_{2}+6r^{2}) \\ b_{6} \mapsto u^{-6}(b_{6}+2rb_{4}+r^{2}b_{2}+4r^{3}) \\ b_{8} \mapsto u^{-8}(b_{8}+3rb_{6}+3r^{2}b_{4}+r^{3}b_{2}+3r^{4}) \\ c_{4} \mapsto u^{-4}c_{4} \\ c_{6} \mapsto u^{-6}c_{6} \\ \Delta \mapsto u^{-12}\Delta \\ j \mapsto j \end{array}$$

Things to note: If Δ is invertible in R, so is the new discriminant. The term j is invariant under isomorphism.

Given any Weierstrass curve with coefficients in $\mathbb{Z}[a_1, \ldots, a_6]$, an isomorphism can be written down to the universal Weierstrass curve over $A = \mathbb{Z}[a_1, a_2, a_3, a_4, a_6]$ given by $C_{a_1, \ldots, a_6} : y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$.

§Defining a Formal Group Law

Given a Weierstrass curve $E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$, we can expand about O to get a formal group law.

• We use the substitution $z = -\frac{x}{y}$, $w = -\frac{1}{y}$ and arrive at $w = z^3 + (a_1z + a_2z^2)w + (a_3 + a_4z)w^2$

We then repeatedly substitute this expression for w on the right hand side to get a formal power series in z equal to w.

- More precisely, let $f_1(z, w) = z^3 + (a_1 z + a_2 z^2)w + (a_3 + a_4 z)w^2$ and let $f_{m+1}(z, w) = f_m(z, f(z, w))$. We take $w(z) = \lim_{m \to \infty} f_m(z, 0)$.
- Let $x(z) = \frac{z}{w(z)}$ and $y(z) = -\frac{1}{w(z)}$. Then (x(z), y(z)) is a formal solution to the Weierstrass equation.
- Given $(z_1, w(z_1))$ and $(z_2, w(z_2))$ we can then find z_3 such that $(z_1, w(z_1)) + (z_2, w(z_2)) = -(z_3, w(z_3)).$

- We have
$$x(z) = \frac{z}{w(z)} = \frac{1}{z^2} - \frac{a_1}{z} - a_3 z - (a_4 + a_1 a_3) z^2 - \dots$$
 and
 $y(z) = -\frac{1}{w(z)} = -\frac{1}{z^3} + \frac{a_1}{z^2} + \frac{a_2}{z} + a_3 + (a_4 + a_1 a_3) z - \dots$ The line connecting $(z_1, w(z_1))$
and $(z_2, w(z_2))$ is $w = \lambda z + \nu$ where $\lambda = \frac{w_2 - w_1}{z_2 - z_1} = \sum_{n=3}^{\infty} A_{n-3} \frac{z_2^n - z_1^n}{z_2 - z_1}$ and $\nu = w_1 - \lambda z_1$.
Setting this equal to our Weierstrass equation for w yields a cubic in z . The roots of this cu-
bic are z_1, z_2 , and $z_3 = -z_1 - z_2 - \frac{a_1 \lambda + a_3 \lambda^2 + a_2 \nu + 2a_4 \lambda \nu + 3a_6 \lambda^2 \nu}{1 + a_2 \lambda + a_4 \lambda^2 + a_6 \lambda^3} \in \mathbb{Z}[a_1, \dots, a_6][[z_1, z_2]].$
The group law requires that $(z_1, w(z_1)) + (z_2, w(z_2)) + (z_3, w(z_3)) = O$.

• So, in order to determine the formal group law $F(z_1, z_2)$ associated to E, we will require that $F(z_1, z_2) = i(z_3)$ where $i(z_3)$ is the z-coordinate of $-(z_3, w(z_3))$.

- We have
$$z = -\frac{x}{y}$$
 and the inverse of (x, y) is $(x, -y - a_1x - a_3)$.
So,

$$F(z_1, z_2) = i(z_3) = \frac{x(z_3)}{y(z_3) + a_1 x(z_3) + a_3}$$

= $z_1 + z_2 - a_1 z_1 z_2 - a_2 (z_1^2 z_2 + z_1 z_2^2) + (-2a_3 z_1^2 z_2 + (a_1 a_2 - 3a_3) z_1^2 z_2^2 - 2a_3 z_1 z_2^3) + \dots$

§What is an Elliptic Curve? (Part III)

Definition. A (generalized) elliptic curve over a scheme S is a morphism of schemes $E \to S$ where each fibre is an elliptic curve. In each fibre we then have a distinguished point O and together these form the identity section $e: S \to E$. We can formally complete the curve at this identity section to get the formal group law. (Zariski locally, this looks like the formal group law we have already given.)

Recommended Resources

The content relating to elliptic curves over fields comes primarily from Joseph Silverman's books *The Arithmetic of Elliptic Curves* and *Advanced Topics in the Arithmetic of Elliptic Curves*. Resources for the rest of the content include Ravi Vakil's *The Rising Sea*, Charles Rezk's course notes on tmf, and Robin Hartshorne's *Algebraic Geometry*.