For the exam, you should know by heart or be able to determine very quickly the following derivatives:

Function	Derivative
$f(x)=c$ where c is a constant	$f^{\prime}(x)=0$
$f(x)=x$	$f^{\prime}(x)=1$
$f(x)=x^{n}$	$f^{\prime}(x)=n x^{n-1}$
$f(x)=e^{x}$	$f^{\prime}(x)=e^{x}$
$f(x)=a^{x}$	$f^{\prime}(x)=\ln (a) a^{x}$
$f(x)=\sin (x)$	$f^{\prime}(x)=\cos (x)$
$f(x)=\cos (x)$	$f^{\prime}(x)=-\sin (x)$
$f(x)=\tan (x)$	$f^{\prime}(x)=(\sec (x))^{2}$
$f(x)=\sec (x)$	$f^{\prime}(x)=\sec (x) \tan (x)$
$f(x)=\csc (x)$	$f^{\prime}(x)=-\csc (x) \cot (x)$
$f(x)=\cot (x)$	$f^{\prime}(x)=-(\csc (x))^{2}$
$f(x)=\arcsin (x)$	$f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$
$f(x)=\arccos (x)$	$f^{\prime}(x)=\frac{-1}{\sqrt{1-x^{2}}}$
$f(x)=\arctan (x)$	$f^{\prime}(x)=\frac{1}{1+x^{2}}$
$f(x)=\ln (x)$	$f^{\prime}(x)=\frac{1}{x}$
$f(x)=\log _{a}(x)$	$f^{\prime}(x)=\frac{1}{\ln (a) x}$

You should also know how to take derivatives of combinations of functions using the following rules:

Function	Name of Rule	Derivative
$y=c f(x)$	Constant Multiple Rule	$y^{\prime}=c f^{\prime}(x)$
$y=f(x)+g(x)$	Sum Rule	$y^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
$y=f(x)-g(x)$	Difference Rule	$y^{\prime}=f^{\prime}(x)-g^{\prime}(x)$
$y=f(x) g(x)$	Product Rule	$y^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
$y=\frac{f(x)}{g(x)}$	Quotient Rule	$y^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$
$y=f(g(x))$	Chain Rule	$y^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$

BE CAREFUL. These rules only work if f and g are \qquad DIFFERENTIABLE \qquad .

With quotients, we also need to check that $g(x)$ is not equal to \qquad .

You should also be able to use these rules to find derivatives of more complicated functions that you don't have to memorize. For example:
1.

$$
\begin{aligned}
\frac{d}{d x}(f(x) g(x) h(x)) & =f^{\prime}(x) g(x) h(x)+f(x)\left(g(x) h^{\prime}(x)+g^{\prime}(x) h(x)\right) \\
& =f^{\prime}(x) g(x) h(x)+f(x) g(x) h^{\prime}(x)+f(x) g^{\prime}(x) h(x)
\end{aligned}
$$

2.

$$
\frac{d}{d x}(f(g(h(x))))=f^{\prime}(x)(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x)
$$

3.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f(x) g(x)}{h(x)}\right) & =\frac{h(x)\left(f^{\prime}(x) g(x)+f(x) g^{\prime}(x)\right)+f(x) g(x) h^{\prime}(x)}{(h(x))^{2}} \\
& =\frac{h(x) f^{\prime}(x) g(x)+f(x) f(x) g^{\prime}(x)+f(x) g(x) h^{\prime}(x)}{(h(x))^{2}}
\end{aligned}
$$

