- 1. Plot the following points on the grid at right:
 - (a) $(r, \theta) = (2, 2\pi/3)$
 - (b) $(r, \theta) = (4, 3\pi/2)$
 - (c) $(r, \theta) = (-3, 3\pi/4)$
 - (d) $(r, \theta) = (0, 11\pi/6)$

- 2. We need a way to translate between polar coordinates and rectangular coordinates. Suppose the polar coordinate (r, θ) and the rectangular coordinate (x, y) correspond to the same location in the plane.
 - (a) Using trigonometry, we have the formula

$$\frac{x}{r} = \cos(\theta).$$

Write down a similar formula corresponding to y.

- (b) Solve the formulas above for x and y, respectively. Now you have a way to covert polar coordinates to rectangular coordinates!
- (c) On the other hand, can you find two formulas that will help you solve for r and θ ?
- (d) Solve your formulas for r and θ and you'll have a way to convert rectangular coordinates to polar coordinates! (It's okay if your formula for θ depends on which quadrant the point is in.)
- 3. Convert $(r, \theta) = (2, 2\pi/3)$ into rectangular coordinates.
- 4. Convert $(x, y) = (-5, -5\sqrt{3})$ into polar coordinates.
- 5. Convert r = 2 into rectangular coordinates. What shape is this curve?
- 6. Convert $r = 3\cos(\theta)$ into rectangular coordinates.