The Alternating Series Test

1. Consider the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$. We call this the alternating harmonic series.
(a) Why can't we use the p-test or either of the comparison tests to determine the convergence or divergence of this series?
(b) Write out the first few terms of the sequence of partial sums. Make a guess about the convergence or divergence of the series.
(c) Prove the convergence or divergence of the series with an appropriate test.
2. Consider the series $\sum_{n=2}^{\infty}(-1)^{n-1} \frac{3 n}{n^{2}-2}$.
(a) Why can't we use the comparison tests to determine the convergence or divergence of this series?
(b) Make a guess about the convergence or divergence of the series.
(c) Both the numerator and denominator of $b_{n}=\frac{3 n}{n^{2}-2}$ are increasing. Use the derivative of $f(x)=\frac{3 x}{x^{2}-2}$ to determine whether $\left\{b_{n}\right\}$ is increasing, decreasing, or neither.
(d) Prove the convergence or divergence of the series with an appropriate test.
3. Determine whether each of the following series converge or diverge.
(a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3 n^{2}}{9 n^{2}+9}$
(b) $\sum_{n=3}^{\infty}(-1)^{n} \frac{n}{\sqrt{n^{3}+2}}$
(c) $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{\pi}{n}\right)$
(d) $\sum_{n=2}^{\infty}(-1)^{n} \sin \left(\frac{\pi}{n}\right)$
(e) $\sum_{m=1}^{\infty}(-1)^{m} \cos (\pi m)$
4. For which values of p does $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{p}}$ converge?
