The Alternating Series Test

- 1. Consider the series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$. We call this the alternating harmonic series.
 - (a) Why can't we use the *p*-test or either of the comparison tests to determine the convergence or divergence of this series?
 - (b) Write out the first few terms of the sequence of partial sums. Make a guess about the convergence or divergence of the series.
 - (c) Prove the convergence or divergence of the series with an appropriate test.
- 2. Consider the series $\sum_{n=2}^{\infty} (-1)^{n-1} \frac{3n}{n^2-2}$.
 - (a) Why can't we use the comparison tests to determine the convergence or divergence of this series?
 - (b) Make a guess about the convergence or divergence of the series.
 - (c) Both the numerator and denominator of $b_n = \frac{3n}{n^2 2}$ are increasing. Use the derivative of $f(x) = \frac{3x}{x^2 2}$ to determine whether $\{b_n\}$ is increasing, decreasing, or neither.
 - (d) Prove the convergence or divergence of the series with an appropriate test.
- 3. Determine whether each of the following series converge or diverge.

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3n^2}{9n^2 + 9}$$

(b) $\sum_{n=3}^{\infty} (-1)^n \frac{n}{\sqrt{n^3 + 2}}$
(c) $\sum_{n=1}^{\infty} (-1)^n \cos\left(\frac{\pi}{n}\right)$
(d) $\sum_{n=2}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right)$
(e) $\sum_{m=1}^{\infty} (-1)^m \cos\left(\pi m\right)$

4. For which values of p does $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^p}$ converge?