1. Write each sum in series notation, assuming the pattern continues infinitely.
(a) $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots$
(b) $10-2+0.4-0.08+\ldots$
(c) $0.999 \ldots=0.9+0.09+0.009+\ldots$
2. For each series below, write at least five terms of the sequence of partial sums and the general term if possible. Use the sequence of partial sums to speculate/determine whether the series converges or diverges.
(a) $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$
(b) $\sum_{n=0}^{\infty} n$
(c) $\sum_{n=0}^{\infty} \frac{3}{10^{n}}$
(d) $\sum_{n=1}^{\infty} \frac{1}{n}$

Hint: Use technology to calculate the partial sums with $2,4,8,16, \ldots$ terms.
(e) $\sum_{n=0}^{\infty}(-1)^{n}$
(f) $\sum_{n=1}^{\infty} \ln (n)$
3. For which of the series above do the terms of the series go to zero? Is this related to whether or not the series converges? If so, how?

