- 1. Assuming the pattern of the first few terms continues, find a formula for the n^{th} term of the sequence. Classify each as arithmetic, geometric, or neither.
 - (a) $\{3, 8, 13, 18, \ldots\}$
 - (b) $\left\{-\frac{1}{4}, \frac{2}{9}, -\frac{3}{16}, \frac{4}{25}, \ldots\right\}$
 - (c) $\{-1, 1, -1, 1, \ldots\}$
 - (d) $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\}$
- 2. For each of the sequences above, determine whether the sequence converges or diverges. Why? If the sequence converges, what does the sequence converge to?
- 3. For which values of r does the sequence $\{a_n\}$ converge where $a_n = cr^n$ for $c \neq 0$?
- 4. Write the first four terms of the following sequences.
 - (a) $\{a_n\}$ where $a_n = n(n+1)$
 - (b) $\{b_n\}$ where $b_n = b_{n-1} + b_{n-2}, b_0 = 1, b_1 = 1$
 - (c) $\{c_n\}$ that is arithmetic with common difference 2 and initial term 13
- 5. Suppose that $\{a_n\}$ is an increasing sequence with all values lying between -2 and 1. Does the sequence converge or diverge? If it converges, can you make any claims about the limit of the sequence?
- 6. Suppose that $\{b_n\}$ is an decreasing sequence with all values lying above 4. Does the sequence converge or diverge? If it converges, can you make any claims about the limit of the sequence?
- 7. Suppose that $\{c_n\}$ is a monotonic sequence with all values lying between 0 and π . Does the sequence converge or diverge? If it converges, can you make any claims about the limit of the sequence?