1. Solve the differential equation.
(a) $\frac{d y}{d x}=x y^{2}$
(b) $\frac{d y}{d x}=x e^{-y}$
(c) $\left(x^{2}+1\right) y^{\prime}=x y$ [Hint: rewrite y^{\prime} as $d y / d x$ first.]
(d) $(y+\sin y) y^{\prime}=x+x^{3}$
(e) $\frac{d u}{d t}=2+2 u+t+t u$
2. Find the solution of the differential equation that satisfies the given intital condition.
(a) $\frac{d y}{d x}=\frac{x}{y}, \quad y(0)=-3$
(b) $y^{\prime}=\frac{\ln (x)}{x y}, \quad y(1)=2$
(c) $\frac{d P}{d t}=\sqrt{P t}, \quad P(1)=2$
(d) $\frac{d u}{d t}=\frac{2 t+(\sec t)^{2}}{2 u}, \quad u(0)=-5$.
3. Find an equation of the curve that passes through the point $(0,1)$ and whose slope at (x, y) is $x y$.
