DIY

1. Solve the differential equation.

(a)
$$\frac{dy}{dx} = xy^2$$

(b) $\frac{dy}{dx} = xe^{-y}$
(c) $(x^2 + 1)y' = xy$ [Hint: rewrite y' as dy/dx first.]
(d) $(y + \sin y)y' = x + x^3$
(e) $\frac{du}{dt} = 2 + 2u + t + tu$

2. Find the solution of the differential equation that satisfies the given intital condition.

(a)
$$\frac{dy}{dx} = \frac{x}{y}, \quad y(0) = -3$$

(b) $y' = \frac{\ln(x)}{xy}, \quad y(1) = 2$
(c) $\frac{dP}{dt} = \sqrt{Pt}, \quad P(1) = 2$
(d) $\frac{du}{dt} = \frac{2t + (\sec t)^2}{2u}, \quad u(0) = -5.$

3. Find an equation of the curve that passes through the point (0, 1) and whose slope at (x, y) is xy.