1. Let A be the area bound by $f(x)=1-x^{2}$, the x-axis, and the y-axis. Find the volume of the solid of revolution formed by rotating A about the y-axis.
(a) Draw A and the solid of revolution. What shape are the cross sections?
(b) Find the area of an arbitrary cross-section $A(y)$.
(c) Calculate the volume of the solid by integrating $A(y)$ over an appropriate interval.
2. Let A be the area bound by $f(x)=\frac{x^{2}}{3}$ and $g(x)=x$. Find the volume of the solid of revolution formed by rotating A about the x-axis.
(a) Draw A and the solid of revolution. What shape are the cross sections?
(b) Find the area of an arbitrary cross-section $A(x)$.
(c) Calculate the volume of the solid by integrating $A(x)$ over an appropriate interval.
3. Find the volume of the solid formed by rotating the area bounded by $f(x)=(x-2)^{3}$, the x-axis, and $x=3$ about $x=1$.
4. Find the volume of the solid formed by rotating the area bounded by $y=\frac{1}{2} x-1$ and the x and y axes about $y=-3$.
