Lecture Notes:

- Parametric equations express both x and y coordinates as a function of a third parameter, often called t. One way to interpret this is to think of t as "time" where $x(t)$ is the x-coordinate of a moving point at time t and $y(t)$ is the y-coordinate of the point at the same time.
In each of the following examples, draw the start/end points and the direction of motion.

Example 1:
$-\left\{\begin{array}{l}x(t)=1+2 t \\ y(t)=-3 t\end{array}\right.$,
or, $\langle 1+2 t,-3 t\rangle$

t	$\mathrm{x}(\mathrm{t})$	$\mathrm{y}(\mathrm{t})$
-1	-1	3
$-1 / 2$	0	$3 / 2$
0	1	0
$1 / 2$	2	$-3 / 2$
1	3	-3

To graph, we can also eliminate the parameter t by solving for t in terms of one of the other variables and substituting.

$$
\begin{aligned}
& \frac{x-1}{2}=t \\
& y=-3 t=-3\left(\frac{x-1}{2}\right)=-\frac{3}{2} x+\frac{3}{2}
\end{aligned}
$$

Example 2:

$$
\left.\begin{array}{c}
-\left\{\begin{array}{l}
x(t)=t^{2} \\
y(t)=2 t-1
\end{array}\right. \\
-1 \leq t \leq 2
\end{array}\right\}
$$

| t | $\mathrm{x}(\mathrm{t})$ | $\mathrm{y}(\mathrm{t})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1 | 1 | -3 |
| $-1 / 2$ | $1 / 4$ | -2 |
| 0 | 0 | -1 |
| $1 / 2$ | $1 / 4$ | 0 |
| 1 | 1 | 1 |
| $3 / 2$ | $9 / 4$ | 2 |
| 2 | 4 | 3 |

To eliminate the parameter: $t=\frac{y+1}{2}$, so $x=\left(\frac{y+1}{2}\right)^{2}$.

Example 3:
$\left.\begin{array}{c}-\left\{\begin{array}{l}x(t)=\cos (t) \\ y(t)=\sin (t)\end{array}\right. \\ 0 \leq t \leq 2 \pi\end{array}\right] \begin{aligned} & \text { or, }\langle\cos (t), \sin (t)\rangle\end{aligned}$

Something to point out: If we have $\pi \leq t \leq 3 \pi$, we have the same circle but with a different start/end point. If we have $0 \leq t \leq 4 \pi$, we go around the circle twice.

We can't eliminate the parameter, since arcsin and arccos have limited range, so we won't recover all values of t. (Also this curve is neither a function of x nor a function of y.)

Example 4:
$\left.\begin{array}{c}-\left\{\begin{array}{l}x(t)=\cos (t) \\ y(t)=\sin (4 t)\end{array}\right. \\ 0 \leq t \leq 2 \pi\end{array}\right] \begin{aligned} & \text { or, }\langle\cos (t), \sin (4 t)\rangle\end{aligned}$

I might hook my computer up to the projector and show this on Desmos.

- If we're thinking of parametric equations as the movement of a point over time, we can expand our idea to include movement in 3D space. In order to do this, we need to be able to graph in 3D space!
- Draw a 3 -axis graph and draw some points. (E.G. $(0,0,0),(0,0,2),(0,2,1),(1,0,1)$, $(-1,2,3)$.
Example 1:

$$
\left.\begin{array}{c}
-\left\{\begin{array}{l}
x(t)=1+2 t \\
y(t)=-3 t \\
z(t)=t
\end{array}\right. \\
-1 \leq t \leq 1
\end{array}\right\}
$$

t	$\mathrm{x}(\mathrm{t})$	$\mathrm{y}(\mathrm{t})$	$\mathrm{z}(\mathrm{t})$
-1	-1	3	-1
$-1 / 2$	0	$3 / 2$	$-1 / 2$
0	1	0	0
$1 / 2$	2	$-3 / 2$	$1 / 2$
1	3	-3	1

Example 2:
$\left.\begin{array}{l}-\left\{\begin{array}{l}x(t)=2 t \\ y(t)=2 t-1 \\ z(t)=t^{2}\end{array}\right. \\ 0 \leq t \leq 2\end{array}\right\} \begin{aligned} & \text { or, }\left\langle 2 t, 2 t-1, t^{2}\right\rangle\end{aligned}$

t	$\mathrm{x}(\mathrm{t})$	$\mathrm{y}(\mathrm{t})$	$\mathrm{z}(\mathrm{t})$
0	0	-1	0
$1 / 2$	1	0	$1 / 4$
1	2	1	1
$3 / 2$	3	2	$9 / 4$
2	4	3	4

This is a good example to talk about traces- they've seen $y(t)=2 t-1, z(t)=t^{2}$ as $x(t), y(t)$ in Example 2 of the previous section, so they can recognize that trace in the y-z plane.

Example 3:

$$
\left.\left.\begin{array}{l}
-\left\{\begin{array}{l}
x(t)=\cos (t) \\
y(t)=\sin (t)
\end{array}\right. \\
z(t)=t
\end{array}\right\} \begin{array}{l}
0 \leq t \leq 2 \pi
\end{array}\right\}
$$

y

Example 4:
$-\left\{\begin{array}{l}x(t)=\cos (t) \\ y(t)=\sin (t) \\ z(t)=\cos (t)\end{array}\right.$
$0 \leq t \leq 2 \pi$
or,
$\langle\cos (t), \sin (t), \cos (t)\rangle$

- They can now attempt the matching activity. I would plan on presenting or having someone present the "pringle".

