Objectives:

- Apply our new analytic derivative techniques to previous problems: graphing, tangent lines, and real world applications.

Use the graph of functions $f(x)$ and $g(x)$ to answer the following questions.

1. Let $h(x)=f(x) \cdot g(x)$. Find $h^{\prime}(1)$.

$$
h^{\prime}(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)
$$

$$
\text { so } h^{\prime}(1)=f^{\prime}(1) g(1)+g^{\prime}(1) f(1)=f^{\prime}(1)(3)+g^{\prime}(1)(2)=(2)(3)+(-1)(2)=6-2=4
$$

2. Let $h(x)=f(x) \cdot g(x)$. Find $h^{\prime}(2)$.

$$
h^{\prime}(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)
$$

but $f^{\prime}(2)$ is undefined. To be absolutely sure that $f^{\prime}(2) g(2)+g^{\prime}(2) f(2)$ as a whole is undefined, we could take left and right limits.
3. Let $\ell(x)=f(g(x))$. Find $\ell^{\prime}(3)$.

$$
\ell^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \text { so } \ell^{\prime}(3)=f^{\prime}(g(3)) g^{\prime}(3)=f^{\prime}(1) g^{\prime}(1)=(2)(-1)=-2
$$

4. Let $k(x)=f(x) / g(x)$. Find $k^{\prime}(3)$.

$$
k^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

$$
\text { so } k^{\prime}(3)=\frac{g(3) f^{\prime}(3)-f(3) g^{\prime}(3)}{(g(3))^{2}}=\frac{(1) f^{\prime}(3)-(2) g^{\prime}(3)}{(1)^{2}}=f^{\prime}(3)-3 g^{\prime}(3)=-2-3(-1)=2
$$

Graphing f Using Derivatives

Remember that we can estimate a graph of f given where f^{\prime} and $f^{\prime \prime}$ are positive or negative.
Given a formula for f, we can calculate f^{\prime} and $f^{\prime \prime}$ and find where each one is positive or negative.

Example:

Graph $f(x)=-x^{3}+6 x^{2}-9 x$ using $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
Step 1: Where is $f(x)$ positive or negative?
(a) Solve for where $f(x)=0$:

$$
f(x)=-x^{3}+6 x^{2}-9 x=-x\left(x^{2}-6 x^{2}+9\right)=-x(x-3)(x-3) \quad x=0,3
$$

(b) Mark the points where $f(x)=0$ on the real number line into intervals. Test a point in each interval and mark if $f(x)$ is positive or negative on that interval.

Number line for $f(x)$:

Step 2: Where is $f^{\prime}(x)$ positive or negative?
(a) Find $f^{\prime}(x)$ and solve for where $f^{\prime}(x)=0$:

$$
f^{\prime}(x)=-3 x^{2}+12 x-9=-3\left(x^{2}-4 x+3\right)=-3(x-1)(x-3) \quad x=1,3
$$

(b) Test points to label the number line for $f^{\prime}(x)$:

Number line for $f^{\prime}(x)$:

Step 3: Where is $f^{\prime \prime}(x)$ positive or negative?
(a) Find $f^{\prime \prime}(x)$ and solve for where $f^{\prime \prime}(x)=0$:

$$
f^{\prime \prime}(x)=-6 x+12 \quad x=2
$$

(b) Test points to label the number line for $f^{\prime \prime}(x)$:

Number line for $f^{\prime \prime}(x)$:

Step 4: Use all the points where $f(x)=0, f^{\prime}(x)=0$ or $f^{\prime \prime}(x)=0$ to divide the real number line into intervals. Using the previous number lines, note for each interval whether $f(x)$ is positive/negative, increasing/decreasing and concave up/down.

Interval	$(-\infty, 0)$	$(0,1)$	$(1,2)$	$(2,3)$	$(3, \infty)$
$f(x)$ negative or positive	positive	negative	negative	negative	negative
$f(x)$ increasing or decreasing	decreasing	decreasing	increasing	increasing	decreasing
$f(x)$ concave up or down	up	up	up	down	down

Step 5: We are finally ready to graph $f(x)$!
Don't forget that we already know $f(x)=0$ for $x=$ \qquad 0,3

Finding Tangent Lines

Find the tangent line to $f(x)=\sin (x) \tan (x)$ at $x=\frac{\pi}{4}$.
Note: It's always worth seeing if we can simplify before taking the derivative. $\sin (x) \tan (x)=\frac{\sin ^{2}(x)}{\cos (x)}$, so that's not any nicer. I'd rather use the product rule than the quotient rule, so let's stick with $\sin (x) \tan (x)$.

$$
\begin{aligned}
& f^{\prime}(x)=\sin (x) \sec ^{2}(x)+\cos (x) \tan (x)=\frac{\sin (x)}{\cos ^{2}(x)}+\cos (x) \frac{\sin (x)}{\cos (x)}=\frac{\sin (x)}{\cos ^{2}(x)}+\sin (x) \\
& f^{\prime}\left(\frac{\pi}{4}\right)=\frac{\sin \left(\frac{\pi}{4}\right)}{\cos ^{2}\left(\frac{\pi}{4}\right)}+\left(\frac{\pi}{4}\right)=\frac{\frac{1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)}+\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\frac{1}{\frac{1}{2}}\right)+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{3}{\sqrt{2}}
\end{aligned}
$$

So, the slope of the tangent line is $m=\frac{3}{\sqrt{2}}$. The other thing we need is the point on the curve at $x=\frac{\pi}{2}$.

$$
f\left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right) \tan \left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)\left(\frac{\sin \left(\frac{\pi}{4}\right)}{\cos \left(\frac{\pi}{4}\right)}\right)=\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\right)=\left(\frac{1}{\sqrt{2}}\right)
$$

So, the tangent line to $f(x)$ at $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ is:

$$
y-\frac{1}{\sqrt{2}}=\frac{3}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)
$$

Interpreting the Derivative

You are applying to receive land from a buffalo farming cooperative. Let b represent the number of buffalo you have in your herd. The cooperative will grant you a plot of land that has width $1.5^{1 / b} \mathrm{~km}$ and length $b^{1 / 2} \mathrm{~km}$.
(a) Write an equation for the area of land you are given if you have b buffalo. By careful to identify units.

$$
A(b)=1.5^{1 / b} b^{1 / 2}
$$

The units for b are number of buffalo, the units of $A(b)$ are km^{2}.
(b) Find the derivative of your function at $b=100$. Include units. Explain what this derivative represents.

$$
\begin{gathered}
A^{\prime}(b)=\ln (1.5) 1.5^{1 / b}\left(-b^{-2}\right)\left(b^{1 / 2}\right)+1.5^{1 / b}\left(\frac{1}{2} b^{-1 / 2}\right)=\frac{-\ln (1.5) 1.5^{1 / b}}{b^{3 / 2}}+\frac{1.5^{1 / b}}{2 b^{1 / 2}} \\
A^{\prime}(100) \approx 0.0498 \frac{\mathrm{~km}^{2}}{\text { buffalo }}
\end{gathered}
$$

So if you have 100 buffalo, adding one additional buffalo to the herd increases the amount of land you're entitled to by $0.0498 \mathrm{~km}^{2}$ (or $49,800 \mathrm{~m}^{2}$ if you prefer).

More Derivative Practice:

Find the derivatives of the following functions.
a) $f(x)=\left(x^{2}-\sqrt{x}\right) 3^{x}$

$$
f^{\prime}(x)=\left(x^{2}-\sqrt{x}\right) 3^{x} \ln (3)+3^{x}\left(2 x-\frac{1}{2 \sqrt{x}}\right)
$$

b) $h(y)=4^{y}\left(\pi^{3}-y^{2}\right)$

$$
h^{\prime}(y)=\left(\pi^{3}-y^{2}\right) 4^{y}(\ln (y))+4^{y}(-2 y)
$$

c) $f(\theta)=(\sin (\theta))^{2} \cot (\theta) \csc (\theta) \quad$ [Hint: Rewrite $f(\theta)$ in terms of sine and cosine.]

$$
f(x)=\sin (\theta) \sin (\theta)\left(\frac{\cos (\theta)}{\sin (\theta)}\right)\left(\frac{1}{\sin (\theta)}\right)=\cos (\theta) \text { so } f^{\prime}(x)=\sin (\theta)
$$

d) $y=\frac{t+1}{2^{t}}$

$$
y^{\prime}=\frac{2^{t}-(t+1) 2^{t} \log 2}{2^{2 t}}
$$

e) $y=2^{\cot (x)}$

$$
y^{\prime}=-\ln (2) 2^{\cot (x)}(\csc (x))^{2}
$$

f) $f(z)=\frac{z^{2}+1}{\sqrt{z}}$

$$
f^{\prime}(z)=\frac{3 z^{2}-1}{2 z^{(3 / 2)}}
$$

g) $f(x)=\sin (\tan (x))$

$$
f^{\prime}(x)=\cos (\tan (x))(\sec (x))^{2}
$$

h) $h(t)=\frac{1+\cos (t)}{t+\sin (t)}$

$$
\left.h^{\prime}(t)\right)=\frac{(x+\sin (t))(-\sin (t)-(1+\cos (t))(1+\cos (t))}{(x+\sin (t))^{2}}
$$

i) $f(x)=\frac{\tan (x)-1}{\sec (x)}$

$$
f^{\prime}(x)=\sin (x)+\cos (x)
$$

j) $y=\sqrt{9 x^{2}+1}$

$$
y^{\prime}=\frac{18 x}{2 \sqrt{9 x^{2}+1}}
$$

